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Preface

The finance industry continues to diversify and expand and requires the application
of increasingly sophisticated software development and data analysis techniques.
The use of algorithmic trading and big-data analysis has become commonplace
within companies in the sector. Moreover, there is a strong emphasis on the rapid
time-to-market of new financial software products and financial models, which can
conflict with the achievement of software quality and correctness. There is therefore
much interest in considering how these conflicting aspects can be managed and
partly resolved, through, for example, the reuse of trusted components, and the use
of rapid application development and iterative (agile) development.

In this book, we will introduce the important concepts of the financial software
domain and motivate the use of an agile software engineering approach for the
development of financial software. We describe the role of software in defining
financial models and in computing results from these models. Practical examples
from bond pricing, yield curve estimation, share price analysis and valuation of
derivative securities are given to illustrate the process of financial software
engineering.

The book is intended to support the teaching of software engineering on financial
computing courses and can also be used by practitioners interested in adopting agile
techniques and software modelling. The material is based on lectures we have given
on the Computational Finance programme at King’s College London.

London, UK Kevin Lano
Howard Haughton



Acknowledgements

We would like to acknowledge the contribution of Hessa Alfraihi, Sobhan
Yassipour-Tehrani and Shekoufeh Kolahdouz-Rahimi for the creation of the agile
model-based development approach and tools used in this book.

vii




About This Book

In Chap. 1, we give an overview of the finance domain and of financial services and
markets. In Chap. 2, we consider in more detail some key financial products such as
bonds and shares and describe how these are modelled and analysed. Chapter 3
introduces the software lifecycle, model-based development (MBD) and agile
development. In Chap. 4, we describe techniques for financial system specification
using UML, and in Chap. 5 techniques for financial system design.

Chapter 6 describes the technologies for financial information processing
and analysis. Chapter 7 considers the software modernisation and re-engineering.
Chapter 8 gives guidelines on how Agile MBD can be practically introduced into
development practice. In Chap. 9, we illustrate the process of financial analysis and
specification through in-depth study of collateralised debt obligations (CDOs).
Finally, in Chap. 10, we describe the tool support for creating financial application
specifications and generating code for these specifications on different programming
platforms.

In the Appendix, we provide a glossary of terms and exercise solutions.

Throughout the book, we will use a number of case studies based on typical
financial engineering problems to illustrate financial software development:

Internal rate of return calculation for bonds
Macaulay duration calculation for bonds
Bootstrapping of interest rates

Estimation of share price volatility
Technical analysis of share prices
Re-engineering Matlab to C#

Yield curve estimation

Derivative security pricing

Risk analysis of CDOs.

The material of these examples can be found at www.nms.kcl.ac.uk/kevin.lano/
fse.
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Chapter 1 ®)
Financial Services and Markets Check for

In this chapter we give an overview of finance concepts such as financial services,
markets and the financial regulatory environment, and discuss the current state of
software engineering in finance.

1.1 Introduction

Generally, financial services can be described as the means by which financial prod-
ucts are provided to those requiring the product. An example of a financial product
would be a bond or a deposit account.

There are a number of key actors involved in the facilitation of a financial service
including:

e The service provider. This could be a brokerage house/investment company, com-
mercial bank, insurance company etc.

e The customer/client. This could be an individual, corporate entity, public sector
entity etc.

e The regulator. Entities whose objectives are to ensure that service providers treat
clients in a manner which does not contravene their rules/guidance and laws, and
to ensure that providers maintain certain standards for the benefit of the market as
a whole.

e Third party infrastructure providers. This includes those providing trading, clearing
and other platforms.

The term intermediation is often used in relation to the role played by service
providers, in that they act as intermediaries between those with excess funds wishing
to invest and those wishing to borrow. As an example, a retail or small investor can
invest funds in a unit trust/mutual fund and can benefit from the relatively smaller fees
(on.a percentage basis).that would be associated with the aggregate amount of such
© Springer Nature Switzerland AG 2019 1
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funds invested. A commercial bank would raise funds by means of offering savings
or deposit type products and such funds would then be on-lent to others desiring to
acquire financing for a mortgage, for example. An insurance company would invest
the premiums received (from those seeking protection against some loss) across a
number of investment types and use the returns on these investments to meet their
obligations under the insurance contracts.

In the delivery of a financial service it is possible that a number of discrete actions
are undertaken by the provider, each or a collection of which constitute what are
termed a transaction. For example, a new client requesting a brokerage company to
trade securities on its behalf might involve:

e Account opening procedures in which clients must provide details of tax/national
insurance, passport (or driving license) details, address, income and net worth etc.

e The service provider conducts due diligence on the client in line with the Proceeds
of Crime Act, 2002 (POCA) and other relevant regulations

e The client deposits a minimum amount in the brokers account via a funds transfer

e The client provides instructions on the type of securities to be bought/sold, price
levels etc.

1.2 Financial Markets

The term financial markets refer to the markets in which buyers and sellers trade
securities. The term markets also implicitly includes organisations that regulate,
infrastructure providers such as the exchanges, as well as the legal framework sup-
porting the market.

There are a number of different types of financial markets including:

Commodities
Foreign exchange
Debt

Equities
Derivatives, etc.

The commodities market is generally described as a marketplace for the trading of
raw (or primary) products. These products comprise, what are termed, soft or hard
commodities. The term soft commodity generally refers to products which are grown
and not mined (the latter of which are termed hard commodities). Examples of soft
commodities include: cocoa, corn and sugar. Examples of hard commodities include:
gold, oil, aluminium.

The foreign exchange market is generally described as the marketplace for the
trading of currencies, i.e. the buying/selling and speculation of currencies. It is per-
haps worthwhile mentioning that the foreign exchange (or FX) markets are one of
the few which are not totally regulated. The spot FX market (i.e. whereby currencies
are bought/sold at todays market prices but for delivery in a few days) is unregulated
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but options and futures contracts on foreign exchange (i.e. where the economics of
the contracts depend on future FX rates) are regulated in the United States and there
are proposals to introduce European regulations covering similar products.

The debt markets (sometimes known as the credit markets) are generally consid-
ered to comprise the marketplace for the trading of bonds. Trading in bonds takes
place in one of two markets: primary and secondary. Primary markets are where new
bonds are issued for the first time. Such issuances can either be undertaken privately,
e.g. where a company raises debt financing by offering a debt security to market
participants (either directly or via an underwriter such as an investment company)
or issues can be public whereby the debt would be listed on a regulated exchange.
Typically the maturity of the debt issued is, normally, greater than one year.

The types of debt issued/traded in the market generally come in two flavours:
government or corporate. Government bonds are issued by national/central/federal
governments. They are considered risk-free in that the government will always pay
their debt! In light of the number of sovereign defaults over the last 20 years perhaps
the term risk-free is a little misleading. Corporate bonds are issued by entities recog-
nised in law as corporate bodies under the relevant laws of the country in which the
entity is incorporated. Since corporate bonds are issued by entities that are perceived
to be more risky than sovereigns their bonds, typically, trade at a yield higher than
that of a comparable government bond.

The secondary bond market is where previously-issued bonds are resold at some
point during their term.

The money markets are, strictly speaking, also a component of the debt markets.
The key difference is that the maturity of money market debt is, generally, less than
one year. Money markets are considered to be highly liquid, much more than the
longer-term debt markets. Common examples of money market products include
government treasury bills, commercial paper and repurchase agreements.

The equities markets comprise the marketplace for the trading of equities. Equities
are either private or public. Private equity is where a company issues shares in their
company directly to investors or via a broker or similar entity. Public equity is where
acompany has issued shares in the company on a regulated exchange. A fundamental
difference between the debt and equity markets is that the latter facilitates for a direct
ownership of the company that the shares are invested in.

The derivatives market comprises the marketplace for the trading of derivatives.
A derivative is a contract between two or more parties whose value is dependent on
some underlying asset or index. Examples of derivatives include options, futures and
forwards. Prior to the financial crisis of 2008, derivatives were, largely, unregulated
and comprised of over the counter (OTC) trading (i.e. direct trading between two
parties without an intermediary such as an exchange) and some amount of exchange
trades. The lack of regulation was considered to be a contributory factor in the crisis,
and the Dodd-Frank Act, 2010 and other similar laws around the world have been
introduced to make derivatives much more regulated.

The financial markets have moved on since the days of the ‘barrow boy’ (Fig. 1.1).
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Fig. 1.1 “The Old Lady just bought half a yard of cable and there are plenty of bids for Bill and
Ben”

The above picture and quote was taken from: http://uk.reuters.com/article/oukoe-
uk-markets-slang-forex-idUKTRE80COLE20120116. The “old lady” refers to the
bank of England, a yard is a billion, cable refers to the USD/GBP FX rate and Bill
and Ben refers to the Japanese Yen. Thus the quote is saying that the bank of England
has bought half a billion pounds against the United States dollar and there is interest
for Japanese Yen.

The term barrow boy derives from the working class background of many city
traders of yesteryear having worked their way from the back office through to being
a star trader. Much trading was conducted via open outcry which is a system in
which traders shout out their buy/sell orders. Much of this type of trading has been
replaced with that of electronic trading in which traders can enter buy/sell orders
electronically and such orders will (hopefully) be filled (either partially or in full) by
offsetting orders by others.

1.3 The Legal and Regulatory Context

Laws and regulations exist to ensure that market participants adhere to prescribed
rules/laws for the protection of all parties engaged in financial transactions. As with
most laws/regulations they act as deterrents but also facilitate for criminal/civil action
in the eventuality that they are breached.
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1.3.1 The Basel Standards

Significant capital adequacy standards have originated from the Bank of International
Settlements (BIS) which have been adopted by many member countries and hence
become regulations at the country level.

Basel I: The Basel Capital Accord

The 1988 accord called for a minimum ratio of capital to risk-weighted assets of
8% which was to be implemented by 1992. This accord focussed primarily on credit
risk. Credit risk is the risk that a borrower of funds might default on their contractual
payments. Another form of credit risk is known as counterparty risk where a party
to a derivative transaction defaults at a time at which the transaction is in the money
to the other party.

By 1991 the ’88 accord was amended to allow for the inclusion of provisions in
the capital calculations and in "95 and *96 further amendments were incorporated to
incorporate bilateral netting and multilateral netting. In 96 amendments were also
made to include market risk amendments to the accord to take effect by 1997. The
amendment allowed banks to make use of internal models (e.g., Value At Risk (VaR))
to determine their market risk capital requirements. Market risk is the possibility that
an investor experiences losses due to changes in market rates (or other factors), such
as those of interest, foreign exchange etc. on positions that they hold in securities
whose values depend on those rates/factors.

Basel II: The New Capital Framework
The 2004 revised capital framework detailed the three pillars:

1. Minimum capital requirements
2. Supervisory process
3. Disclosure.

Basel 2.5/3

In January 2009 the principles for sound liquidity risk management and supervision
were issued. Later in 2009 further documents were issued covering securitisations,
off-balance sheet vehicles and trading book exposures. These principles were intro-
duced in light of the inadequacies in regulations observed during the credit crisis
of 2008, when many banks were discovered to have de-facto capital/asset ratios
substantially below the 8% regulatory minimum, due to the use of mechanisms to
remove assets from their published balance sheets.

In 2010 the Basel III standards were issued covering (amongst other aspects):
counter-cyclical credit buffers, and leverage ratios. A key idea behind these enhance-
ments was to ensure that banks and internationally active financial institutions retain
sufficient common equity Tier 1 capital. In the absence of sufficiency of capital,
restraints on capital distribution could be imposed on the bank. Tighter definitions
of capital were introduced in 2012/2013 and the updates continue.
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1.4 Risk Management and Portfolio Risk

Supply and demand (as well as market manipulation) gives rise to risks within trad-
ing portfolios. Changes in macro-economic parameters as well as changes in credit
quality also gives rise to risks within banking and trading book portfolios.

Risk management seeks to reduce the effect of losses due to changes in the under-
lying factors which affect value. In this sense risk can be viewed as downside risk, i.e.
where losses occur when factors change. Increasingly financial institutions seek also
to exploit opportunities to monetise gains when things move in the “right” direction.

A commercial bank borrows money from retail and corporate clients (i.e., from
savers or depositors). They then on-lend portions of these borrowed monies to others
for a multiplicity of purposes. For example one type of loan might be for a residential
real-estate purchase another might be for a car purchase and yet another might be to
facilitate capital investment for a corporate entity.

The risks on the three loans mentioned above are not the same. A lending insti-
tution might wish to perform a credit risk assessment (e.g. a credit score or credit
rating) on each borrower which reflects the underlying collateral/security for the
loan as well as systemic risk (i.e. market factors such as interest and FX rates) and
idiosyncratic risk, e.g. default risk of the borrower.

As successive loans are added to the lenders portfolio a picture will emerge as to
the composition of the borrowers in the portfolio. Different compositions will result in
different risk profiles and hence risk-weighted assets. For a banking portfolio certain
hedges might be put in place such as credit default swaps (CDS) (i.e. a product which
provides a payment in the eventuality of default of a specified entity), insurance,
and other provisions, but such hedges are not likely to be dynamically changing (i.e.
selling and buying of the hedges) if the portfolio is largely held to maturity. However,
if a portfolio is a trading portfolio then hedges might be bought and sold at a fairly
rapid rate depending on the volatility of the market factors influencing value in the
portfolio.

A financial institution might want to be able to quantify the risk in a portfolio by
analysing the incremental effect of adding a new transaction to the portfolio. Risks
can be analysed on the basis of sector/industry, currency, borrower, country etc.

1.5 The Curse or Value of Excel

Many financial models are developed in Excel and these are used to produce valua-
tions of financial products. Excel has also been used by many banks to analyse the
risks of investment/banking portfolios. Ideas are prototyped with spreadsheets, and
(in many cases) these spreadsheets may form the basis of mission-critical applica-
tions.
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The benefit of Excel lies in its simplicity, and the vast library of built-in functions
with many off-the-shelf packages available to include in the tool. It sits on everyone’s
desk. Users can even write code in VB, procedurally or using OO style ...what’s not
to like about it? However, security is compromised as many models built in Excel sit
on the PC of the user that created them, and a corruption of the disk could lead to a
loss of data and/or the model itself. Even if Excel models are stored on a shared server
data integrity is still an issue. Recall that each Excel model is part of autonomous
spreadsheets which might “communicate” with each other, but there is no logical
data model with enforced data integrity. The spreadsheets are difficult to assess or
verify.

As a consequence increased reliance is placed on the creators (or gatekeepers)
of the models to provide others with an understanding of the “big picture” that the
spreadsheets convey. This implies that operational risk is increased for an institution
that makes excessive use of Excel for mission critical applications. At the opposite
end of the spectrum financial institutions will both procure the acquisition of trading,
middle office and settlement systems from third party vendors as well as develop their
own in-house systems. Institutions may question why they should develop in-house
systems when they can buy off the shelf.

In order to exploit the benefits of proprietary methodologies, knowledge and
processes institutions may develop their own software systems rather than use third
party tools. It is not uncommon however, to hear that an institution has similar
functionality replicated across a myriad of different systems, each of which has
either cost the firm huge amounts to build or to procure and maintain.

Some institutions, e.g. JP Morgan, were able to marry concepts of rapid proto-
typing via spreadsheet-like features and OO development in their Kapital system.
In this system users were able to create instruments “on the fly” and in a manner
which lends itself to verification. This is very useful for creating novel instruments
for emerging business areas, and so leads to scalability and enhanced productivity
in a fast changing environment. The Kapital system was developed in Smalltalk,
which allowed the use of meta-modelling for detailing the financial and risk mod-
els of the system and reflection for models (objects) to value themselves, facilitate
data integrity, audit etc. The use of Kapital had substantial benefits for JP Mor-
gan in increasing market share and reducing the time to market of new financial
products [1].

1.6 Agile Development Processes

Many financial institutions have dated and poor technology infrastructure, incon-
sistent data models and fairly inflexible management processes which underserve a
dynamically changing sector. Frequently updated and far reaching local and inter-
national regulations require institutions to be able to rapidly respond to changing
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requirements. In many instances institutions have to hire many additional contract
and permanent staff to accommodate for these changing needs.

Many institutions are still reliant on traditional staged and waterfall models for
software development but the industry is transitioning to the use of Agile develop-
ment. The transition, however, cannot be achieved overnight and requires organisa-
tions to “manage a cultural change” from a predominantly serial approach to one
that is iterative and more consultative.

The financial domain is often extremely high-pressured, with considerable com-
petitive advantages gained by the organisation which is the first to introduce a new
form of financial product, or to find new ways to exploit existing products. Thus
financial engineers and software developers face pressures to deliver products as
quickly as possible. Agile development can potentially be a means of achieving
faster time-to-market by focussing on the delivery of working software that satisfies
key requirements as soon as possible (although the software may not be complete
and may not cover all requirements). Correctness and accuracy are also very impor-
tant factors in financial software, and an agile approach needs to be combined with
precise mathematical modelling in order to address these aspects.

1.7 Big Data Analysis

Financial institutions, increasingly, understand that the nature of their business and
the way in which they implement their business process means that data integrity
and data intelligence is an important issue for them. Big data analysis has and will
continue to be a significant area of interest for financial institutions seeking to better
understand the trends and relationships embedded within financial data and that
of exogenous factors. This will lead to enhanced business intelligence on which
new marketing, product development and new growth areas can be identified and
undertaken.

Big data analysis should not be viewed as a standalone exercise since it should
also be used to:

e Drive the data requirements for the integration of new products in trading and
other systems

e Assess the implications of regulations/laws on the business model of an institution.
This implies that organisations need to adopt enterprise risk analysis for their
business processes

e Assess the implications of business decisions on the risks of an institution across the
varied silos with a view towards adopting an enterprise risk management (ERM)
framework.

Machine learning is also being introduced in this context to recognise patterns in data
and build models (e.g., in a neural net) to make predictions based on these models.
This has been used particularly for share price prediction, and to identify patterns of
trading behaviour which indicate attempts, at market manipulation.
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Some organisations are moving towards the use of cloud technology as a trade-off
between developing in-house systems and outsourcing data integrity and business
continuity.

Summary

In this chapter we have given an overview of the essential concepts of the financial
applications domain, and we identified some of the issues with the present state of
software development in this domain.

Reference

1. Cincom, JP Morgan derives clear benefits from Cincom Smalltalk (2016), www.cincom.com/
pdf/CS040819-1.pdf
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Chapter 2 ®)
Financial Products and Analyses oo

In this chapter we describe some of the main financial products in detail (bonds,
shares, derivative securities) and explain some of the analyses which can be per-
formed to value the products and to define strategies for trading in them.

2.1 Financial Engineering

A wide range of financial products are traded by financial institutions, such as bonds,
shares, derivative securities and various forms of structured products such as collat-
eralised debt obligations (CDOs). For such products the task of financial engineering
includes: (i) to model a product in terms of its cash flows, risks, value, volatility, etc.,
(ii) to evaluate significant properties of a specific product, such as the risk of default
in a CDO.

In the first case, an institution may be interested in creating a new product or a
variation on an existing product, and wishes to explore how this product could operate
in practice and benefit the institution. Mathematical models are constructed and dif-
ferent scenarios executed on the models. Key discoveries such as the Black-Scholes
equation for pricing derivative securities [ 1] enabled institutions to effectively model
new products (such as options based on shares) and hence to expand their range of
products. The contribution of computational modelling in this case is to provide sim-
ulation and other numerical and statistical modelling techniques to help explore the
behaviour of mathematical models and their impact on pricing and risk management.

In the second case, efficient algorithms are required to compute the predictions
of models for specific products. There may be a trade-off between accuracy and
timeliness, as for example in high-frequency trading, and heuristics may be used if
exact computational procedures are not available.

In this chapter we will look in particular at four different forms of financial product:

e Bonds: these represent a loan of capital funds from an investor to a bond issuer,
in return for a regular coupon payment over a fixed term, and return of the loan at
the end of the term.

© Springer Nature Switzerland AG 2019 11
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e Shares: these represent a purchase of a part-ownership stake in a publicly-traded
company, a share in the equity of the company.

e Derivative securities: a financial product whose value is based upon the value of an
underlying asset, which could be a physical commodity such as gold, or another
financial product, such as shares.

e Collateralised Debt Obligations (CDOs): aggregated portfolios of debts.

2.2 Bonds

Bonds are a means for a company or government to raise funds from investors
whereby the repayments are based, inter alia, on either a fixed or a floating interest
rate, a principal figure denoting the amount borrowed, and a ferm over which the
funds are paid back. For businesses, bonds have the advantage that investors do not
acquire a stake in the company (as in the case of shares). However, the value of
the bond as an investment depends upon interest rates: a general increase in interest
rates will reduce the value of fixed interest rate bonds, since higher returns will be
available elsewhere.

A bond is purchased for a given price including an initial investment amount,
known as the principal of the bond. Examples of UK government bonds can be
found at dmo.gov.uk. When calculating bond values, it is usual to consider a nominal
principal amount for which 100 is a convenient figure. A bond has a term, eg.,
Syears, 10years, etc. The most common form of bond is a bullet bond in which
coupon payments are paid to the investor throughout the life of the bond, with the
last payment being the sum of the final coupon plus return of the investment amount
(redemption of the loan). In a fixed-coupon bond the coupon rate c is defined as
an annual percentage of the investment amount, and the coupon is paid at regular
intervals (twice per year, or once per year, etc.) during the term.

In terms of cash flows, the initial payment of price is a flow from the investor
(Iender) to the bond issuer (who is the borrower of the investment). The coupon
payments are regular cash flows of coupon/f from the borrower to the investor,
where coupon is the annual coupon amount, expressed as the coupon rate ¢ times
the principal (100), and f is the frequency of coupon payments per year. There are
f * term payments of the coupon/f amount in total. At term, there is also a cash flow
of 100 from the borrower to the investor.

For example, consider an investment of £100 in a 20-year 2% annual coupon
bond, with a price of £105. The investor receives coupon amounts £2 at the end of
each of the first 19 years, then £102 (coupon plus principal) at the term (Fig.2.1).

Since the price is greater than 100, the bond is trading at a premium, ie., 105% of
the face/principal amount. If the price were less than 100, then the bond would be
trading at a discount.

Mathematical modelling of bonds is used to compute their value under different
market situations, in particular, how their value depends upon the underlying risk-
free interestrate r.. The basic quantity fora bond is its payout: the actual total amount
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Fig. 2.1 Cash flows for a bond

which an investor receives back. This is the sum of all the coupon payments over the
term, plus the initial investment. For fixed coupon bonds with a whole-integer term
we have

payout = term * coupon + 100
or equivalently
payout = term x ¢ x 100 4+ 100

This is £140 in the example.

But the value of the money received at a future time (eg., N years in the future)
is typically reduced compared to the same amount received today. An amount X
received N years in the future, with respect to an annual interest rate r, is worth
X/(1 + r)N today. We say that the amount X is discounted to X/(1 + r)Y. r > O is
usually assumed, so X /(1 + NV < X.

The reason for this decrease in value is that an investor could instead invest
their funds at interest rate r, whereby the amount Y today would have grown to
Y % (1 + r)N after N years. Thus the amount X in N years time is equivalent to the
amount X/(1 + r)V today, given an annual interest rate r.

For a fixed-coupon bond with annual coupon payments, the present value,
value(r), of a bond is then the sum of all the discounted payments over the bond
term, assuming an effective annual interest rate of r over the term of the bond:

value(r) = (X" coupon/(1 +r)") + 100/ (1 + r)’e™

Notice that as r increases, value(r) decreases, ie., the partial derivative of value(r)
wrt r is negative. For example, the value(0.01) at 1% interest rate of our 20-year
bond is £118. However, value(0.02) is £100.

Since interest rates will vary over the term, it is simpler to work with an effective
equivalent uniform rate when calculating value, however it is also possible to compute
the value using non-uniform rates, with different » values used for each discounted
payment.

The price of the bond already contains an assumption by the bond seller about
what the effective interest rate r will be over the term: the price is set so that it is
close to value(r). At least, this is the case for government bonds and bonds offered
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by institutions with a very low risk of defaulting on the loan (failing to repay it). The
assumed rate in this case will be close to the risk-free interest rate because the bonds
themselves are considered almost risk-free as investments (the UK government has
never, yet, defaulted on its bond loans).

Therefore it is interesting to discover the rate r at which the market price of the
bond equals value(r). This is called the internal rate of return (IRR) of the bond, also
referred to as its yield, and measures the quality of the investment. The IRR satisfies

value(irr) = price

The investment is profitable for the investor if the IRR is higher than any other
available yields of investments of the same term and of equivalent or lower risk, i.e.,
the bond returns more value than an alternative investment of comparable risk. A
high IRR indicates that the bond is more likely to be profitable for the investor (in
the absence of defaults): the bond is profitable wrt an alternative investment with
yield r whenever irr > r, therefore a larger value of irr means that the bond remains
profitable wrt a wider range of available alternative investments, compared to a bond
with a lower irr.

Looked at in a different way, a bond with a high IRR may be under-priced and
hence a good investment. The IRR of our example is 0.017, ie., 1.7%. In general,
computation of the IRR requires the use of some iterative approximation procedure
such as the secant or bisection techniques. We look at ways to solve this problem in
Chap.4.

Interest rates are not the only factor in bond prices. The risk of default of the bond
seller (borrower) also has to be considered: in general, the more risky the bond is,
the higher the coupon rate offered by the borrower, and hence their bonds will have
a higher IRR and/or lower price compared to a less risky bond (such as government
gilts). The risk of default on a loan is classified by debt ratings agencies in categories
ranging from AAA (the lowest risk, essentially risk-free), to AA, A, BBB, BB,
B, CCC. BBB grade to AAA are called ‘investment grade’, whilst below BBB is
called ‘junk grade’. The rating of a company or sovereign state has high impact on
their ability to raise money through bonds: the loss of AAA rating for a state will
significantly increase their costs of raising money if the rating falls substantially.
Finally, bonds are also subject to market forces, which means their price will normally
rise if there is a high demand for them, since interest rates will fall.

A zero-coupon bond pays no coupons during its term, but only an accumulated
interest amount together with the principal repayment at the end of the term. The
valuation of these bonds is quite simple, because the value(r) equation becomes:

value(r) = R/(1 + r)™

for discrete compounding, where R is the total repayment on 100 nominal principal.
The IRR can then be directly calculated as

irr-= (R/price)ﬁ — 1
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Fig. 2.2 General bond trading situation

Some bonds may be traded during their term. The value of a bond at a point tm
during its lifetime can be calculated based on the remaining future cash flows due
from it (where tm is an integer and falls on a coupon payment date):

value(r, tm) = (X" coupon/(1 + r)") + 100/(1 4 r)rem=tm

in the case of an annual fixed coupon bond, with #m an integer, tm > 1, tm < term.
The situation is more complex if tm falls between coupon dates, in that case we
need to take account of the accrued interest for the next coupon, and the displacement
of the purchase date #m from the payment dates. Let DSC be the number of days from
settlement (ie., the date tm when the bond is bought/sold) until the next coupon date,
and E the normal number of days in the coupon period. Eg., for a twice-yearly coupon,
E could be 182, half of the number of days per year. Let A be DSC — E, the number
of days from the beginning of the coupon period to the settlement date (Fig. 2.2).
Then the accrued interest for the next coupon payment is

coupon

accruedInterest = -
[frequency

A
*E
taking coupon as the principal times the coupon percentage, and frequency as the
number of payments per year.

The valuation is modified to:

coupon r 1
value(r, tm) = [ 2V, —/ I+ —— +
frequency frequency
’ N—1+25¢
Face / (1 + —) + accruedInterest
frequency

where N is the number of remaining future coupon payments after tm, and Face is
the face amount of the bond, usually 100.

Onacoupondate,A = 0and DSC = E, so that this version of value(r, tm) reduces
to the previous case for annual coupon bonds.
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2.2.1 Discrete Versus Continuous Compounding

The above calculations used discrete compounding of interest rates: an amount X
grows to an amount X * (1 + )V if invested for N years at annual rate r, where
the increment r x amount is added to amount once at the end of each year. An
alternative is to continually apply r (in practice this amounts to compounding at a
daily frequency). Mathematically, this is expressed as

X % er*N

If we use continuous compounding then the discounting computation becomes
X % e~ instead of X/(1 + r)".

2.2.2 Yield Curves

The professional valuation of bonds makes use of the predicted interest rates over the
term of the bond. The variation of interest rates with the length of an investment is
known as the term structure of interest rates or a yield curve (Figs.2.3 and 2.4 show
example yield curves). The x-axis represents the term of the investments in years,
the y-axis shows the yield of the investments: assuming that these commence from
the current date.

The basis of estimating a yield curve is to identify a set of market data points (ie.,
bond prices or yields) from a range of financial assets, with similar risk levels, within
one country. Typically these are based on government bonds of varying terms for the
specific country. By computing the effective duration and IRR of bonds of different
durations, a set of (time, rate) points are obtained, and a computational optimisation
procedure can be applied to fit a curve to these data points, and hence enable a rate to
be assigned to any duration. Different models exist (eg., the Nelson-Siegel formula
[2]) for the shape of the curve. The Nelson-Siegal (NS) model for yield curves uses
the formula

y() = B+ B2 x (1 —exp(—1/ X))/ (t/ M)+
B3 * (1 — exp(—t/ A1)/ (1] M) — exp(=1/ Ap)

to compute the yield y(¢) for given duration ¢, where 31, 3,, 03 and A, are real-valued
constants. Figures 2.3 and 2.4 are yield curves that follow this equation.

The curve has a long-term rate component (3 ), short-term component (2nd fac-
tor), and a ‘hump’ (3rd factor). 3; > 0 is assumed, as is J; + 0, > 0 and A\, > 0.
The problem is to estimate the parameters [3; and A; which make the curve best fit
a set of given market data points: this process is termed ‘fitting the curve’ to the
data. The Nelson-Siegal-Svensson (NSS) model adds a further ‘hump’ term with
parameters,G4.and. Ay,
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Fig. 2.4 Example Nelson-Siegal yield curve (2)

In Chap. 7 we will implement yield curve estimation using numerical optimisation
techniques.

From a yield curve the price of a bond of a particular duration d can be calculated
by finding y(d) and using this to compute value(y(d)) for the bond.

Yield curves tend to be upwards sloping because investors prefer more liquid
(shorter term) investments where possible, and hence require higher yields on longer-
term investments. In addition, longer-term investments carry a higher risk of default
and hence again a higher yield is required in order to compensate for this risk. Inverted
yield curves (where short-term yields are higher than long-term) can indicate a lack
of confidence in the economic future, and strongly inverted curves have historically
preceded recessions.
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2.2.3 Floating Rate and Index-Linked Bonds

A floating-rate bond has coupons which vary from payment to payment based on
an underlying interest rate, such as the LIBOR (London Interbank Offered Rate: the
rate that banks lend to each other). This type of bond offers some protection against
interest rate rises which would decrease the value of a fixed-rate bond. However,
the varying rate of coupons is a potential disadvantage. A floating-rate bond contract
specifies the reset period, ie., how often the payment rate is adjusted. It is also possible
to obtain bonds which start at a fixed rate for a given period and then transfer to a
floating rate.

Typically, the rate r1 to be applied at the next coupon date will be known, but not
subsequent rates, if coupon and reset dates coincide. Eg., for semi-annual resets and
coupons following LIBOR + 10 basis points, 1 would be the 6-month LIBOR rate
at the preceding reset point, plus 0.1%. The next coupon is the principal (eg., 100)
times the current floating rate r1: coupon = 100 x r1. The value at a time interval ¢
before the next coupon date is then:

value(r) = 100 % (1 +rl) x e™ "™

where r is the relevant continuous compounding rate applicable to period 7.

Index-linked bonds also have varying cash flows. Such bonds link the coupon
rates to some price index/inflation index in order to cancel out the effects of inflation
on the value of coupon payments. For example, a UK index-linked gilt has coupon
payments and principal payments adjusted in line with the retail price index (RPI),
equivalent to the consumer price index in the US.

A simplified version of this process is to consider that at a date ¢, the indexation
factor ifact, is computed as the ratio of the index rate at time ¢ compared to the rate
at the issue date s of the bond: ifact, = index, /index,. The principal is then adjusted
to 100 * ifact, and coupons are recalculated based on this adjusted principal:

coupon, = ¢ * 100 % ifact,

Thus the valuation formula at time point ¢ becomes:

term

value(r) = (El.'i’l’"coupont/(l + r)i) + 100 * ifactt/(l + r)

for an annual repayment index-linked bond with ferm > 1 years remaining until the
bond matures. This value is ifact, * valuey(r) where valuey(r) is the usual valuation
formula

term

valueo(r) = (¢ % 100/(1 +r)") +100/(1 + r)

Note that value(r) is an approximation, since the actual indexation factor that will
be applied to future coupon payments is not known at time ¢.
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2.3 Shares and Stocks

Shares represent a part share ownership in the equity of a company: the surplus of its
assets over its liabilities. Selling shares in its equity is another means for a business
to raise funds. Shares tend to be more volatile than bonds, and hence can be viewed
as riskier as an investment. Apart from trading gains and losses, shares can also
provide cash dividends paid as a share of a company’s profits to its shareholders,
with the amount paid proportional to their share holding. Share dividends involve
a company issuing more shares to its existing shareholders, eg., one new share for
every 4 already held. This can be analysed as subdividing the existing shares.

Share price analysis is concerned with the possible loss or gain in a portfolio of
shares over different periods of time, and with the choice of trading strategies in order
to maximise gain. Technical analysis seeks to use past performance data to predict
future performance, whilst Fundamental analysis seeks to evaluate key properties of
a business as a guide to its share performance. Both kinds of analysis use indicators
for trading, to determine appropriate sell/buy/hold actions for particular shares. There
is a sense in which technical analysis is futile, because if it were possible to predict
future share prices on their past history, then the same predictions would be read
by many investors, and their consequent concerted selling/buying behaviour would
remove any advantage from the prediction.

Indeed, a fundamental assumption in the usual mathematical analysis of shares is
that their prices follow a Markov process, that is, the future price depends only on
the current price and not on any previous history. Notwithstanding these limitations,
different heuristic or algorithmic approaches have been used for technical analysis
share price prediction: neural nets; genetic algorithms; K nearest-neighbours, etc.

Historical share information is also used to estimate the volatility of a share (how
much its price is likely to change) and the correlation of different shares (or market
sectors). Diversification of share portfolios to include combinations of shares with
negative correlations can significantly reduce overall volatility and reduce the risk
of losses.

2.3.1 Share Trading Processes

Most stock markets manage trades in shares via a system termed continuous double
auction, whereby orders to sell and buy shares are submitted to the exchange and
either executed immediately, or placed in a queue if the order specifies a limiting price
for sale/purchase which cannot yet be achieved in the current state of the market.

The first type of order is termed a market order, and identifies the company
to be traded, the volume of shares to trade, and the position (buy or sell). Limit
orders also specify a limit price: for purchase this is a maximum limit (the bid price)
on the purchase price, while for sell orders it is a minimum limit price (the ask
price) for a sale.
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Limit orders which cannot be executed directly will be queued in a limit order
book, which ranks the orders by the limit prices: the bid orders ranked from the
highest to the lowest limit prices (ie., the orders most likely to be satisfied are ranked
above ones less likely to be satisfied), and the ask orders ranked from the lowest to
the highest limit prices. When a matching order is received for a queued order, a
trade is completed, ie., a transaction of sale and purchase of the same quantity of the
given share.

The state of the limit order book is usually publicly visible to all traders, and
this can give rise to risks of market manipulation, since orders may be cancelled
or amended while in the queue. Attempts at market manipulation can consist of
submitting orders which are intended to affect the share price, and are cancelled
before they can be executed.

2.4 Derivative Securities

Derivative securities include a wide variety of financial instruments whose value
depends upon an underlying asset. For example, forward contracts are an agreement
to buy or sell an asset at a fixed price at a fixed future time. These are generally traded
over the counter as a private agreement between two parties. In contrast futures
contracts permit variation of the maturity date within some limits, and are traded
on an exchange and tend to be standardised. Options give the holder of the option
the right (but not the obligation) to buy (call option) or to sell (put option) an asset
on or before a date for a fixed price. American options can be exercised at any
time up to the expiration date, whilst European options can only be exercised on the
expiration date.

Derivative securities can be based on almost any underlying variable: (i) traded
securities such as shares, bonds, gold; (ii) financial variables such as interest rates,
exchange rates or prices of general commodities; (iii) other variables such as climatic
variables, election results, etc.

Derivative securities can be used for hedging: limiting the losses from a con-
tract or financial position, or for speculation: using the derivative to reduce the
amount of funds needed to speculate on an asset, ie., to increase the leverage of the
investor’s funds.

Options have become an essential feature of financial markets since stock options
were first traded on an exchange in 1973. Consequently the valuation of options
and other derivative securities is of major importance. The valuation of derivative
securities takes into account the value of the underlying asset, the underlying interest
rates, and other factors. In some cases a precise formula for the value has not yet
been found. We consider techniques for derivative security valuation in Chap. 8.
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2.5 Collateralised Debt Obligations

A collateralised debt obligation (CDO) is an aggregated set of debts (such as mort-
gage loans or business loans made by a bank), the cash flows from which are then
used as a basis for further financial products. This is termed securitisation of the
loans. The aggregation of debts with different (and presumably uncorrelated) default
characteristics has the benefit (in principle) of reducing the overall impact of defaults.
The analysis of the risk associated with CDOs is highly critical for the institutions
that trade in them: the global financial crisis of 2008—2009 was in large part caused
by incorrect estimations of risks for CDOs based on sub-prime mortgage loans.

Figure 2.5 shows an example of a CDO with underlying collateral loans and bonds
owned by a bank X. Loans are created whenever X lends to borrowers, e.g. for a
business loan. From the perspective of the bank, the loan is an asset which it is
using to earn income (a cash flow of interest payments). However, each borrower
has a probability of default, related to its credit rating. So each loan/bond of X has a
default probability. The overall risk of loss from individual and multiple defaults can
be computed from individual default rates and assumptions about the correlation of
defaults.

To set up a CDO from a collection of debts, the bank would establish a special
purpose vehicle (SPV), probably incorporated in a tax advantage jurisdiction like
the Cayman Islands, which is considered bankruptcy remote to bank X. This ensures
that investors on the notes/securities issued by the SPV have no recourse to X if
there are defaults with the securities issued by the SPV. The SPV issues securities
backed from the cash flows from the underlying loan pool (eg., mortgage payments,
loan interest payments). A typical loan pool might consist of several hundred up to
thousands of loans used for backing a single security issued by the SPV. The issued
securities are collateralised by the cash flows from the more primitive loan pool.

Loans and
*Loans and bonds sold to
SPV >
bonds SPV *securities
Bank X
c Cash from
investors of SV +
natas Cash from

investors of SPV

nntas

SPV security
investors

Fig. 2.5 CDO example
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The cash obtained from the investors are used to facilitate bank X undertaking more
loans and bonds and changing the structure of its balance sheet and risk-weighted
assets and capital associated with those assets. In particular, the economic risks of
the assets are removed from the balance sheet of X, meaning that it gains the ability
to re-lend the asset amount without violating the Basel regulations requiring a certain
percentage of its assets to be retained as equity (eg., 8%). This increases the effective
leverage ratio of the bank (the ratio of its assets to its equity).

The analysis of CDOs involves computing the risk of losses from single and
multiple defaults within the aggregated pools of loans, some of which may be (partly)
correlated and others assumed to be uncorrelated. If there are n loans in a pool of loans
owned by bank X, we need to find the probability that m from » number of defaults
will occur where m < n. This information is useful for a bank in understanding the
risks it faces from borrowers defaulting. The information may also be used by rating
agencies to determine the credit rating of securities issued by the SPV.

One means to organise the CDO is to group loans into sectors, eg., all loans to
other financial institutions in one sector, loans to oil and gas businesses in another
sector, mortgage loans in another, etc. The assumption is made that defaults within
one sector cannot cause defaults in another, but only possibly cause defaults within
the same sector (termed ‘default infection”).

Risk contributions allow a bank to be able to assess the relative riskiness of one
sector with respect to another. If there is a downturn in the economy which affects one
sector more than another then a bank might be more inclined to lend to companies in
the least affected sector more than in the most affected sectors. In Chap.9 we carry
out analysis of CDO risks and evaluate the risk contributions of particular borrowers
and sectors within a CDO.

2.6 Essential Calculus

In subsequent chapters we will make use of some basic facts of calculus. Properties of
differentials arise in financial theory since many finance processes can be understood
based on limits % of discrete changes AV in variables over discrete time intervals
At. In addition, numerical estimation and optimisation procedures such as the secant
or Newton-Raphson techniques are based on calculus concepts.

Recall that if f, g are differentiable, and so are the composed functions f + g,

f * g and f /g, then the composed functions have differentials:

df +9) _df dg

dt dt dt
dif xg)  df dg
a5t o dt
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The exponential function has the key property that it is its own differential:

de'
—=¢
dt

2

From these results we can infer, for example, that the change with time of the
present-day value X * ¢~ of an amount X received time 7 in the future subject to
rate r

d(X x e ")
dt

is always negative, for X > 0 and r > 0, ie., X x e~"™ decreases with increasing .

Partial differentiation arises when a function of several variables is differentiated
with respect to one of these. For example, X * e~"* may be considered as a function
of both r and ¢. Its partial differential wrt r is written as

X ke ™
or

This expresses how the value function varies wrt r, and shows that this also decreases
as r increases.
A particularly important partial differential equation is the Black-Scholes equa-

tion:

of of 1 0’f

kSt — %02k STk —— =rx

ot A 052 f
This describes how the value f of a derivative security based on an asset with value
S varies wrt time ¢ and wrt S. r is the risk-free interest rate, and o the volatility of
the underlying asset. Different solutions to this equation provide valuation formulae
for many kinds of derivative security, as we discuss in Chap. 8.

2.7 Combinatorics and Statistical Properties

Combinatorics concerns quantifying the number of different ways that an event can
occur or a choice can be made. The number C}! for natural numbers n and r with
n > r is referred to as “n choose r” or as the binomial coefficient of n over r. It
represents the number of different ways that a set of r elements can be chosen from
a set of size n. For example, 2 elements can be chosen from a set {a, b, ¢, d, e} in
essentially % = 10 different ways (5 choices of the first element, then 4 for the
second, then discarding the duplicated choice sets).
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Mathematically, C; is

n!/(r!'x (n—r)!)

However, it is more efficient to compute C;' as
(I, /1!

Eg., Cg =4x5/2 x 1. Whichever is the smaller of n — r and r is used as the lower
argument of C7, since C; = C),_,.

Statistical distributions also play an important role in financial analysis, together
with properties of distributions such as their average or mean and their standard
deviation.

If a series of n measurements of some quantity (eg., a share closing price on
successive trading days) is made, the result can be expressed as a discrete distribution
d = Sequence{xy, ..., x,} where the x; are ordered from low to high values.

The average mean(d) of d is simply (X;x;)/n or d— sum()/n in OCL notation
(Chap.4). The notation pu, can be used for the mean.

The variance of d measures how much the x; are dispersed from their mean point.
Variance is denoted aﬁ and defined as:

03 = (Zi(xi — p)?/n

The standard deviation is the positive square root o, of the variance.

In the example of share price data, o, gives an indication of how volatile the
prices are over a time period. The symbol ¢ is usually used to denote volatility in the
financial context.

The mean and variance are termed the first and second moments of a distribution.
Higher moments (based on higher powers of x — p for a random variable x and its
mean u) include skewness, a measure of how unsymmetrical a distribution is, and
kurtosis, a measure of dispersion of the distribution.

A collection of measurements such as d can be regarded as a discrete statistical
distribution with probability density function pdf defined by:

pdf (x) = d—count(x)/n
That is, the probability of x is the number of times it occurs in d, divided by the size
of d.
A property of any pdf is that

Expdf(x) =1
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Fig. 2.6 Normal distribution N (0, 1)

Related to the pdf is the cumulative density function, cdf . The value of cdf (x) is
the proportion of the distribution which is < x. For a discrete distribution d:

Cdf(x) = Z:y:d&yfxpdf(y)

An important concept for any distribution or random variable is the expectation
or expected value of the distribution/variable. This is the probability-weighted sum
of the possible outcomes:

E(V) = Xprob(V =x) xx

For the discrete distribution d, E(d) = X;pdf (x;) * x;, which is the mean p,. In
finance the expectation is also often denoted by u (eg., the expected return from an
investment), but can be applied to any outcome where probabilities can be assessed.
For example, if you enter into a contract which has a 99% chance of earning £1000
profit, and a 1% chance of losing £1,000,000, your expected outcome is a loss of
£9010.

A key distribution both in finance theory and other domains is the normal distri-
bution (Fig.2.6). This has the pdf defined by:

pdf (x) = e 0317 [(g % /(2 % 7))

where o is the standard deviation. The mean is 0. This standard distribution is denoted
N(0, o). The pdf has the property that pdf (x) = pdf (—x) because the distribution
is symmetric about 0.

The cdf cannot be defined by a closed formula, but approximations can be used
instead. The cdf of the normal distribution arises in the solutions to the Black-Scholes
equation in particular (Chap. 8).
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With reference to a normal distribution N (0, o), the overall probability of a ran-
domly sampled point x from the distribution being in the range (—o, o) is 68.3%,
of being in the range (—2 * 0,2 % o) is 95.4%, and of being in (—3 x 0,3 *x o) is
99.7%. The term “3-sigma event” is used to refer to an event which is as unlikely as
obtaining a N (0, o) sample outside the range (—3 * o, 3 * ¢). That means the event
should occur no more than 3 times out of 1000. Stronger restrictions are “4-sigma
event”,*“5-sigma event”, etc. Such a designation (and probability) only makes sense
if the event in question actually follows the normal distribution. The distribution
is only a mathematical approximation for the real behaviour of such variables as
stock-exchange indexes. Recent history of the financial world has shown that this
assumption can be misleading for cases of exceptional events such as stock market
crashes and other financial crises!

The normal distribution is also used in the mathematical modelling of share prices
as a stochastic process. For example the share price S can be modelled as a solution
of an equation

B = pxdt + 0 xnx Jdt

where p is the expected rate of return of the share, and o the volatility (it is the
standard deviation of the proportional change in S over time), and 7 is a sample from
N (0, 1). This model or other similar stochastic models can be used for Monte-Carlo
simulation of share prices by generating large numbers of samples 7 to represent
possible price movements of the share.

Another distribution which arises when considering the random arrival of rare
events (such as defaults on loans) is the Poisson distribution. This has pdf defined as:

pdf (x) = e "% p* /x!

for positive integers x, where the mean . is also the variance.

Correlation and covariance are also important statistical properties of financial
quantities, providing a measure of how closely linked two or more separate quantities
are. If V| and V; are two random variables (eg., representing defaults in two separate
loans, with V; = 1 indicating default of i and V; = 0 indicating no default), then
it is interesting to determine the expectation E(V; * V) of both loans defaulting,
given known expectations E (V) and E(V,) of individual defaults. In general, E(V; *
Va) # E(V)) * E(V,), although the equality holds if the variables are statistically
independent.

The quantity

C(V1,V2) = E(Vi % Vy) —E(V1) x E(V2)

is termed the covariance of V| and V,. A value of 0 indicates that the variables are
uncorrelated (although they may not be statistically independent).

The values for covariance can be derived from historical data or from theory.
A negative covariance indicates.that the variables tend to change value in opposite
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Table 2.1 Covariance matrix v, Vs
Vi p*(l—p) pxp—1
V2 px(p—1) p*(1—p)

directions, a positive covariance indicates that they tend to change values in the same
direction.

For example, if V, = 1 — V| then C(Vy, V,) = p % (p — 1) where p is the proba-
bility of V; = 1. On the other hand, if V| = V,, then C(Vy, V,) = p x (1 — p).

The covariances of different variables can be represented in a covariance matrix,
which has an entry for each pair of variables. This is symmetric about the axis, which
contains the variances of individual variables. In the case of V, = 1 — V| the matrix
is as shown in Table 2.1.

A related concept is the correlation coefficient between two random variables,
which expresses the strength of their correlation. This is defined as

p(Vi, Vo) = C(Vy, Vo) //(0F % 03)

where aiz is the variance of V;. For the firstexample above, p(V1, V,) = —1,indicating
a complete inverse correlation between the variables. For the second example the
correlation is 1.

In general the correlation coefficient ranges between —1 and 1. When it is positive
this indicates that the variables tend to increase or decrease in value together. When
negative, this indicates that as one increases the other tends to decrease, and vice-
versa.

In portfolio management the covariance between the value of two or more financial
products is a key element in reducing overall variance (volatility) and increasing the
overall value of the portfolio. One reason for this is that:

variance(V| + V) = variance(Vy) + variance(V,) + 2 * C(Vy, V)

so that a negative covariance will reduce the variance of a sum of two variables
compared to the sum of their variances. In our first example, the variance of V| + V,
is reduced to 0 because the sum is constantly 1.

Summary

We have given an overview of some important financial products and their analy-
sis. We have also explained essential calculus and statistical theory which underpin
financial analysis.

We will use examples of financial analysis in subsequent chapters to show how
different software engineering techniques and underlying technologies can be applied
to financial software problems.
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Exercises

1. In Sect. 2.2, what does value(0) represent?

2. Given two bonds, both with term 10 years from the same date, annual coupon rate
2% and annual payments, but with different prices £105 and £110, determine without
calculation which has the higher yield.

3. How does the value(r, tm) of a bond change as tm approaches the ferm of the
bond?

4. Generalise the definition of value(r) to value(rs) where rs is a sequence of interest
rates of length term, rs[i] represents the annual interest rate in year i of the investment,
i = 1to term.

5. A parallel shift of a yield curve represents a change in the curve where the rates
for all time periods move by the same amount § up or down. What parameter(s) of
the NS equation can be used to express such a change?

6. Risk assessment of CDOs uses segregation of the underlying loans into differ-
ent sectors, with the assumption that defaults in one industrial/business sector are
independent of defaults in another. Is this assumption always valid? Suggest two
possible counter-examples where a company failure in one sector can cause failures
in another.

7. Compute the value of a resold bond according to the model of Fig.2.2 where the
frequency is 2, annual coupon is 5.75%, DSC is 90, E is 182, A is 92, the term is
10years and N = 20.
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Chapter 3 ®)
Model-Based and Agile Development oo

This chapter introduces the main concepts of the software development lifecycle,
and describes software specification techniques and development approaches which
can be used for financial applications:

Software modelling using UML

Model-based development (MBD)

Domain-specific modelling

Agile development methods: Scrum, Kanban and XP.

The chapter will give a non-technical overview of these topics, and they will be
developed in more detail in subsequent chapters.

3.1 The Software Development Lifecycle

The following activities take place in any software development process, whether
organised into strict sequential stages (as with the classical ‘waterfall’ process) or
iterated in repeated cycles (as in agile methods such as Scrum). The software lifecycle
stages are:

Feasibility analysis

Requirements analysis
Specification

Design

Implementation

Testing

Maintenance and Decommissioning.
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3.1.1 Feasibility Analysis

This stage asks whether there is a business case for the system and if it will actu-
ally be used. It considers (i) Technical feasibility—is it possible to build the system
with the available technology? (ii) Financial feasibility—can it be developed with
the available budget? (iii) Time—is it possible to develop in a useful time-frame?
(iv) Resources—are the necessary resources (people, tools) available for the devel-
opment?

3.1.2 Requirements Analysis

In this stage the requirements analyst:

o Identifies the stakeholders of the system: these may be customers, users, regulators,
or anyone with an interest in or impacted by the system. Some stakeholders are
more directly involved in the system than others—we can represent this situation
by the ‘onion model’ of different categories of stakeholders (Fig.3.1).

e Systematically identifies and records the requirements of stakeholders of the sys-
tem, and constraints imposed on the system by existing systems it operates with,
or by existing work practices and regulations.

P 3

Political
Beneficiaries

Functional

A Beneficiaries

Fig. 3.1 ‘Onion model’ of stakeholders [1]

oLl Z'yl_ilsl




3.1 The Software Development Lifecycle 31

Requirements divide into functional requirements (the services and functions pro-
vided by the system) and non-functional requirements (its efficiency, usability, exten-
sibility, etc). There may be conflicts between different requirements and ambiguities
in the informal requirements. Such conflicts and ambiguities should be resolved
before the definitive specification is constructed.

For example, we may have an accuracy requirement for a financial computation,
and a timeliness requirement, and these may be in conflict: it may be necessary to
settle for lower accuracy in order to achieve the timeliness requirement, if this is the
more critical requirement.

There are four main phases in requirements analysis:

e Domain analysis and requirements elicitation: identify stakeholders, gather infor-
mation on domain and requirements from users, customers, and from other stake-
holders and sources. Classify requirements as functional or non-functional, and
decompose requirements into sub-requirements using a notation such as SysML
[2].

e Evaluation and negotiation: identify conflicts, imprecision, omissions, and redun-
dancies in requirements; consult and negotiate with stakeholders to agree resolu-
tions to these issues.

e Specification and documentation: systematically document the requirements as a
system specification, in a precise notation (which is not necessarily machine-
readable): this specification represents an agreement between developers and
stakeholders on what will be delivered.

e Validation and verification: check the formalised requirements for consistency,
completeness and correctness wrt stakeholder requirements.

For example, in the case of a financial system the initial requirements specifi-
cation could be expressed in terms of formulae defining the required properties in
mathematical notation.

There are many possible requirements elicitation techniques that can be used to
obtain requirements from stakeholders:

Interviews with stakeholders

Brainstorming sessions

Observation of existing processes/work practices

Scenario analysis—model specific scenarios of use of the system, e.g., as UML
sequence diagrams

Document mining

Goal decomposition

Exploratory prototyping.

Thorough requirements analysis can reduce errors and costs later in a develop-
ment.
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3.1.3 Specification

Based on the requirements specification, a detailed machine-readable model of a
system is constructed, using graphical or textual notations to define required data
and behaviour in an explicit but platform-independent manner. UML notations such
as class diagrams and OCL can be used to define the model. It is important to avoid
implementation details, in order that the specification can be translated into a wide
range of different implementation platforms. Only sufficient detail should be included
to specify the logical properties of the system.

Validation and verification techniques include inspection of the specification text,
including formal reviews, structured walkthroughs of its behaviour in particular sce-
narios, and execution/testing, in the case of an executable specification language.

3.1.4 Design

Based on the specification, the design defines an architecture and structure for the
system, dividing it into subsystems/modules responsible for parts of the system func-
tionality and data. The design process includes:

1. Architectural design: define the global architecture of system, as a set of major
subsystems, and the dependencies between them.

2. Subsystem design: decompose the global subsystems into smaller subsystems.
Continue until clearly identified modules are obtained (subsystems which cannot
be further divided).

3. Module design: define each module, in terms of:

a. the data it encapsulates—attributes/associations;
b. the operations it provides (external services)—e.g.: their names, input and
output data, and specifications. This is called the interface of the module.

4. Detailed design: for each operation of a module, identify the steps of its process-
ing.

The structure of a design may evolve as experience with prototypes of the system
grows, for example.

3.1.5 Implementation

In this stage code is produced from the design in one or more programming lan-
guages. Traditionally, this is done manually by programmers. In model-driven engi-
neering (MDE)/model-based development (MBD) approaches, code production is
automated. Automated coding potentially reduces implementation time and cost,
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but problems can arise if the generated code needs to be manually adapted. The
code-generation process should preserve the semantics of the specification, so that the
code is correct-by-construction (assuming that the specification is correct). Likewise,
the code generation should not introduce additional quality flaws such as duplicated
code or excessive numbers of operations in a class.

3.1.6 Testing

The aim of testing is to discover errors in a system (before the customers or users
discover them). Testing can be either white-box: based on the internal code struc-
ture, and designed to test each program path; or black-box: based on requirements
independently of code structure.

Testing can be applied at several levels:

Code/Unit testing: testing of each component separately (this is mainly white-box)
Integration testing: test that components interact correctly

System testing: test entire system

Acceptance tests: test the system against requirements (mainly black-box).

3.1.7 Maintenance

This includes all post-delivery activities, including:

e Correction: bug-fixing and correcting defects.

e Adaption: changing the system to operate in a new or updated environment.

e Prevention: refactoring and reorganisation of a system to improve the structure of

the system and facilitate its future evolution.

Enhancement: extension of the system to handle new requirements.

e Decommissioning: ensure use of the system is phased-out in a controlled manner,
and securely dispose of data held by the system.

These activities can consume far more resources than the development of entirely
new systems.

3.2 Software Modelling Using UML

The Unified Modelling Language (UML), was introduced in 1997 as a unification of
different object-oriented modelling approaches and methods such as OMT and the
Booch method. By this time, the large number of different modelling notations was
becoming an obstacle to the use of object-oriented methods, and the leading experts
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and companies in the field agreed to collaborate to produce a single authoritative
approach. The UML is now an international standard controlled by the OMG industry
consortium (including most leading software companies such as IBM, Microsoft,
Oracle, etc): www.omg.org/uml. UML has become the most widely-used modelling
notation in industry, and many hundreds of tools and books have been produced
for UML. The language has been through two main versions 1.* and 2.*, of which
version 2.* is a major extension of 1.* with richer modelling notations. Specialised
versions of UML, such as Foundational UML (fUML) have also been developed, to
support executable modelling or modelling in specialised domains.
The main motivations for UML modelling are:

e toprecisely define the requirements of a software application, in a System Require-
ments Specification (SRS);

e as a tool for thought, to work towards an understanding of a system and to facilitate
communication between developers and stakeholders;

e to define reusable models capturing domain concepts;

e to support model-based development, including code generation from models.

The main notations of UML are: class diagrams, use case diagrams, state
machines, sequence diagrams, Object Constraint Language (OCL), activities, and
deployment diagrams. Surveys of users have shown that these notations are the most
frequently used, and particularly class diagrams, use case diagrams and sequence
diagrams.

Class diagrams are the primary notation of UML, and define the data of an appli-
cation: information that it processes or is aware of, and the structure of this data and
its internal relationships. Figure 3.2 shows an example class diagram.

Other UML notations include:

e Use case diagrams: these describe the functionalities of an application from the
user perspective. They show the functional services provided, and link these to the
actors (roles of users) who may interact with the services.

e State machines: these define the life histories of objects in terms of states and
events and the transitions that events produce between the states of objects. They
can also be used to define the stages of execution of an operation or of use cases.

e Sequence diagrams: these show examples of interactions (communications)
between objects, and between users and the system.

e Object Constraint Language (OCL): a textual specification notation that can be
used to precisely define operations and use cases, and class invariants.

e Activity diagrams/textual activity notation: these show the compositions of actions
as sequences, choices, iterations, etc., to form operation or use case behaviours.

e Deployment diagrams: these show physical configurations of devices, communi-
cation links, and the distribution of software across devices.

Different models are emphasised in different domains. Interaction diagrams are used
particularly in telecoms system specification, and for embedded systems. Activities
can show workflows for business processes. Class diagrams and use case diagrams
are widely used.across.many. application. domains. In the financial domain, class
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Fig. 3.2 Example UML class diagram

diagrams can be used to specify the financial concepts and their inter-relations, as in
Fig.3.2. OCL can be used to give precise functional specifications of operations, cor-
responding to function definitions in Excel/VBA. Activities can show the algorithms
and procedures used for particular financial processes.

3.2.1 Class Diagrams

Figure 3.2 shows an example of a class diagram, for a conceptual model of derivative
securities.

Class diagrams show the entity types of system as class rectangles (e.g., Investor)
enclosing their internal data, or attributes. For example, each Investor has a name,
which is a string, and each Asser has a price, name, dividendRate and volatility.
This defines the structure of the application data, which can then be relied upon by
application processing (e.g., the asset data can be used in calculations of the price of
a derivative security based upon the asset). Relationships are shown as lines between
classes: for example, any DerivativeSecurity has a specific underlyingAsset, which
is an Asset. Relationships (associations) normally have two ends, each end may have
a rolename to indicate the meaning of that end, and a multiplicity to indicate how
many objects can be related: for example any number (the * symbol) of derivative
securities may depend upon the same underlying asset. In addition, one investor may
have any number of contracts, involving different (or the same) assets.

Specialisations between one entity and another are shown using an inheritance
arrow (with an unfilled triangle at the superclass/generalisation end). For example,
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Commodity is a special case of Asset, and PutOption and CallOption are two alterna-
tive specialisations of Option. Subclasses inherit all the features of their superclasses,
thus a PutOption has attributes of maturity, maturityPrice, volatility, price, etc (but
not amount or quality, which are specific to Commodity objects).

In cases where a small number of alternative values are needed, an enumerated
type or enumeration can be used. For example, OptionKind declares that there are
two kinds of option, european or american. This type could be used to declare an
attribute kind : OptionKind of the Option class. Further class diagram elements are
operations, which can define query or update processing on individual classes, and
specialised forms of relationship, such as ordered associations and aggregations
(whole/part relationships).

3.2.2 Use Case Diagrams

Use cases are used during requirements analysis of a system, to identify the ways in
which the system is intended to be used, and the services it is expected to provide.
A use case expresses a particular unit of an application’s behaviour, encompassing
a family of similar scenarios of use of the system. The users of the system are also
shown, they are grouped into actors and linked to the use cases that they have the
capability/authorisation to perform.

For example, for a derivative securities trading application based on Fig. 3.2, there
could be use cases to buy a futures contract, to sell a futures contract and to buy and
sell call options (Fig.3.3). The actors involved in the use cases are shown as stick
figures linked to their use cases. Each use case in this example involves interaction
with a trader who wants to trade the asset, and with an exchange which lists these
assets as tradeable.

Typically, the use cases depend upon the class diagram data and involve processing
upon this data, using the data directly or by means of operations of the classes.

Fig. 3.3 Use case diagram Exchange
example Trader / Buy futures contract ..._.\
\ Sell futures contract

Buy call option

Sell call option
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Fig. 3.4 Example state machine diagram

3.2.3 State Machines

State machines define the dynamic behaviour of objects and operations, they can
also be used to specify operation or use case behaviour as a series of steps, and to
express life histories of objects.

For example, the procedure to obtain a yield curve from bond market data could
be specified as in Fig. 3.4. From the initial state (shown as a black circle) the process
moves through states (processing stages) of obtaining market data, converting this
data to zero-coupon bond data, then using an optimisation procedure to fit a Nelson—
Siegal curve to the data, and finally extracting the parameters of this curve. The
termination state is shown as a ‘bullseye’ symbol; this marks the termination of the
process.

3.2.4 Interactions

Interactions, expressed as UML sequence diagrams, describe examples of system
behaviour in terms of object communications. The diagrams show object instances
obj of classes Entity as vertical lifelines, and the messages exchanged between objects
as arrows between lifelines. Time increases from the top to the bottom of the diagram.
Figure 3.5 shows an example interaction, in which an Application object a requests
a FIXEngine object f to send an order request to set up a futures contract.

The sequence diagram shows an example (a scenario) of execution of the buy
futures contract use case of Fig.3.3, and details of how this use case is carried
out within the system. The vertical lines show the timelines of particular objects,
with time increasing from the top to the bottom of the lines. Boxes on the lines
represent operation executions. An arrow with an open arrowhead, as in the example,
represents an asynchronous message from one object to another: the caller does not
wait for the called object to respond. An arrow with a filled arrowhead represents
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Fig. 3.5 Example
interaction diagram a : Application f : FIXEngine
createOrder \
Buy >
futures
contract Construct
and send
order
request

[

a synchronous message: the caller’s flow of control is suspended until the called
operation is completed.

Unlike class diagrams and formally-specified use case diagrams, interaction dia-
grams do not provide sufficient information to support code generation from the mod-
els, they are instead used to help the developers understand the required behaviour
of the system. In our development process they are an optional model.

3.2.5 Object Constraint Language (OCL)

The OCL was added to UML in order to provide more precise textual specifications to
describe UML elements such as operations, classes and use cases. OCL includes data
types of integers and real numbers, and collection data such as sequences and sets.
The usual programming language expressions suchasa = b,a < b,a / =b, a x b,
a.pow(b), etc are supported, in addition various operators on objects and collections
are defined, which provide a powerful facility to specify behaviours declaratively:

e Navigation through a class diagram using the x.f operator to refer to feature f of
object or collection x.
For example, in the model of Fig.3.2, inv.contracts is the set of contracts of an
investor inv : Investor, and d.underlyingAsset.price is the price of the underlying
asset of a derivative security d.

e s—collect(x | e) is the sequence of values of e for objects x in a collection s.
For example, inv.contracts— collect(c | c.holding.price) is the sequence of prices
of the assets held via the contracts of investor inv.

e s—select(x | P) is the subcollection of collection s that consists of the x : s that
satisfy P.

e s—reject(x | P) is the subcollection of collection s that consists of the x : s that
do not satisfy P.

o _s— sum() is the sum of the values in a non-empty collection s of numbers or strings.
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e s—prd() is the product of the values in a non-empty collection s of numbers.
e s—sortedBy(e) produces a copy of s sorted in ascending order of the e-values of
its elements.

These and other operators correspond to programming library operations, as in
the C++ Standard Template Library (STL): s— sum() corresponds to std::accumulate
(s.begin(), s.end(), 0) in C++ STL. s—collect(e) corresponds to std::transform
(s.begin(), s.end(), result.begin(), e).

The operators can be combined to define the effect of operations in a class diagram,
or of use cases. For example, an operation to compute a sum of squared values could
be:

sumSquares (s : Sequence(double)) : double
post:
result = s->collect( x | x*x )->sum()

3.2.6 Activity Diagrams

Activity diagrams provide a means to describe behaviours that are composed of
collections of tasks (such as the algorithms of operations, or the workflows of business
processes), in a graphical manner. They consist of:

Activities An activity is the specification of behaviour as the coordinated sequencing
of subordinate units whose individual elements are actions.
Actions An action represents a single step within an activity, that is, one that is
not further decomposed within the activity. An action may be complex in
its effect and not atomic.

Activities are generalisations of sequential programming constructs such as sequenc-
ing, conditionals and loops.
Activity diagrams show:

Actions (as state boxes)

Arrowed lines denoting control flows (sequencing of actions)
Conditional choice point branching and joining (diamonds)
Parallel flows (starting and ending at vertical bars).

Figure 3.6 summarises these notations. Parallel flows mean that multiple separate
threads of control execute together, whilst in a conditional choice only one flow of
control is taken.

Structured activities can also be expressed as pseudocode using generic program
statements:

e variable = expression
e if E then S1 else S2
e_while £ do.S
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Fig. 3.6 Activity diagram notations
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where S, S1 and S2 are statements, and E is an expression.
For example, the create yield curve workflow can be written more explicitly as
the pseudocode statements:

var bonds : Sequence (Bond) ;

bonds := obtainSampleBonds() ;

var zbonds : Sequence (Bond) ;

zbonds := convertBondsToZerocoupon (bonds) ;
fitNScurveToBonds (zbonds) ;
extractNSparameters ()

Activities are the central modelling notation for behaviours in executable UML
languages such as fUML [3]. However, activities and pseudocode can be too pro-
cedural and low-level to be used for specification, and it is preferable to use OCL
constraints for the declarative description of a system where possible.
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3.3 Model-Based Development (MBD)

MBD is a form of software development which uses UML or another modelling lan-
guage to develop systems based on models, instead of code. In MDD (Model-driven
development), and MDA (Model-driven architecture) models are the primary arti-
fact in software development, with code as secondary. Typically, executable code is
automatically generated from models. MBD has the benefits that models are simpler
to review and modify than code, and automated code generation can raise produc-
tivity substantially. Model repositories and libraries can be established for the rapid
production of systems in a common ‘product line’ family. MBD may also reduce
the need for outsourcing. MBD has been widely used in specialised industry sectors
(such as automobile systems), with generally positive results [4]. Typically a domain
specific language (DSL) is defined for some specific application or technical domain,
and used to write models for that domain. Tools specialised for the DSL can then
generate code from the DSL models, or perform analysis of the DSL models. Neg-
ative aspects of MBD are the training and adoption costs needed, and the generally
poor level of tool support.

3.3.1 Models and Metamodels

Class diagrams and other visual and textual descriptions of a system are termed
models of the system; they define the required and expected properties of the system
using the graphical/textual notations. Such models are at a higher abstraction level
than program code (in, for example, Java or ANSI C): they abstract away details of
how data is arranged in computer memory or how iterations through data collections
are to be performed.

At the specification level an expression such as

inv.contracts— collect(c | c.holding.price)

can be written, without any details of how this sequence of values is to be computed or
represented in a program. In a Java implementation for example, any sequential data
structure such as a Vector or ArrayList could be used to implement the expression. The
specification avoids fixing such a particular data structure representation, and hence
permits a wide range of possible implementations in many different programming
languages.

Models such as Fig. 3.2 correspond to programs in Java, C#, Python, etc: the class
diagram classes will usually be represented by classes in these languages (or by
structs in C), their features by fields/instance variables, and inheritance by an
inheritance mechanism in these languages.

Class diagrams can also describe languages themselves, e.g., a language of activ-
ities (Fig.3.7). Such diagrams are termed metamodels: they are models defining the
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LXPIession

Fig. 3.7 Activity language as a metamodel

permitted structure of other models, in this case of the activity language statements.
Metamodels can be defined to represent software languages such as Java, C, Python
etc, as well as the entirety of UML itself.

3.3.2 Model Transformations

Model transformations are procedures which map one model into another model,
or into text. An example is a code generator transformation which takes as input a
class diagram model, and produces as output Java code. Other forms of transforma-
tion include refactorings, to restructure a model in-place, or migrations, to map a
model in one modelling language to a corresponding model in a related modelling
language. In this book we will be mainly concerned with the use of transformations,
rather than their definition, but the UML notations of class diagrams (used as meta-
models) and use cases can also be used to specify model transformations in addition
to conventional software applications.

3.3.3 Domain-Specific Modelling

A domain-specific language (DSL) is a notation (graphical, textual or a combination),
together with a precise definition of the notation, intended to represent concepts and
elements of specific application domains. A DSL has:

e An identified application domain where it will be used.
e A set of concepts with properties and relationships, forming the ontology of the
domain.
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e Representations that are appropriate, visually and conceptually, for modellers in
the domain, and for stakeholders who need to review such models. This is termed
the concrete syntax of the DSL.

e A precise abstract grammar, defining the way DSL elements can be combined.
This is called the abstract syntax of the DSL. It can be defined by a metamodel,
e.g., Fig.3.2 considered as a metamodel. This fixes the structure of models of the
DSL.

e A precise way, usually by means of model transformations or templates, to map
DSL models to implementations.

DSLs encode domain knowledge about a specific technical or application domain,
and the DSL transformations encode knowledge and expertise about the implemen-
tation of the domain concepts in code. Domains are typically quite narrow, such as
a domain for derivative security pricing. The restriction of the domain enables more
focussed and accurate modelling, and specifically optimised code to be generated,
however this also means that multiple DSLs may need to be constructed for a single
application.

3.3.4 The State of Practice of MBD in Industry

The research of [4] surveyed over 450 practitioners, and found that some MBD is used
across many sectors, including finance. But it is usually used selectively, for parts of
systems. Commonly, a DSL is built for a narrow domain (a family of closely-related
applications), together with code-generators and templates for this domain. This
automates the previously manual coding of applications in the domain. Productivity
increases of 20-30% were obtained from code generation. It was concluded that
MBD canreduce effort in developing and maintaining software—enabling businesses
to concentrate on their core business, not IT. Numerous companies reported that
they reduced offshoring, as MBD automated work that would previously have been
outsourced.

The survey also found that there were barriers to MBD adoption, particularly from
middle-managers and from code gurus (who may oppose MBD because of their fear
of their skills becoming redundant). To be successful, MBD projects need at least
one ‘MBD guru’ in a development team. MBD seems more appropriate for specific
domains, not for general purpose software.

Some examples of substantial MBD projects include:

e SunGard Financial Systems carried out a MBD modernisation project of Front
Arena/AMS (an application concerned with the management of trades and orders).
This project used MDA and Scrum—but with XML, not UML [5].

e Motorola use the MDD-SLAP process for telecomms systems development [6].

e Tata Consultancy Services defined the MasterCraft toolset for business systems
development, using MBD and UML [7].
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e Volvo Cars use a systematic MBD process for vehicle software construction, using
Simulink models of vehicle components [8].

Companies such as Volvo and Tata have invested heavily in MBD and have used it
in many projects. Microsoft have used an MBD approach called Software Factories,
for software product line development using DSLs [9].

3.3.5 MBD Using UML-RSDS

UML-RSDS is a lightweight MBD approach, in which platform-independent speci-
fications are defined using UML class diagrams and use cases. These are analysed for
internal quality and correctness. Platform-independent designs are then synthesised
in a mainly automated manner from the specifications. From the designs, executable
code in an OO programming language (currently, Java, C# or C++) or in C or Python
can then be mainly automatically synthesised.

This approach is more restricted in scope than more elaborate MBD approaches
such as MDA, but it is more automated (Fig. 3.8). Thus it provides greater agility and
ability to respond to changes. In contrast to f{UML, applications are defined in terms
of declarative use case and operation specifications, instead of detailed procedural
activities. Thus specification construction and modification is simpler and less costly.

DSLs can be defined in UML-RSDS using class diagram metamodels to define
the domain ontology and DSL abstract syntax. A simple concrete syntax is used,
based on OCL, and transformations defined using UML-RSDS can be used to map
DSL models to code or to other representations.

Specification: UML
| em—
| e—

Automated translation

Design
Automated
code
generation
Implementations: Java C# C++ C Python

Fig. 3.8 UML-RSDS software production process
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3.4 Agile Development Methods

The concept of agile software development was introduced c. 2000 to correct draw-
backs of conventional plan-based development of software, which was viewed as a
heavyweight and inflexible process, unable to respond to changing requirements [10].
Conventional plan-based development emphasises the gathering and formalising of
all requirements before starting coding, in contrast, agile development emphasises
incremental work on requirements, coding, and integration in short cycles. Thus it
can be responsive to changing requirements.

In conventional development, the development team is often isolated from stake-
holders: this results in delays in obtaining information or feedback. In contrast, agile
development emphasises close collaboration between the team and stakeholders.

The key principles of agile development include (agilemanifesto.org): to satisfy
the customer through early and continuous software delivery; to welcome chang-
ing requirements; to deliver working software frequently (every 2 weeks to every
2months); business people and developers to work together daily; rely on face-to-
face communication to convey information; continuous attention to software quality;
simplicity is essential.

Agile development is now widely adopted in industry. The main approaches are
eXtreme Programming (XP) [10, 11], Kanban and Scrum [12].

3.4.1 Agile Development Techniques

Agile techniques include:

e Iterations or sprints: development work which implements specific user require-
ments, in a short time frame to produce new releases.

e Refactoring: Regularly restructure code to improve it, to remove redundancy and
other flaws [13].

Figure 3.9 shows the agile development process used in the Scrum method, with
a product backlog of work items to be worked on in the project, a subset selected
for work in the current iteration, the sprint backlog, and an iteration or sprint which
implements these work items to produce a deliverable increment of the software. The
iteration should not normally last longer than one month, and a daily review cycle is
maintained via ‘daily scums’ or ‘standup meetings’ of the team.

Sprints are regular re-occuring iterations in which project work is completed.
These produce deliverables that contribute to the overall project and yield an incre-
ment of the system. Each iteration involves a set of work items or tasks (‘user stories’
in Scrum) to be implemented. Tasks can be classified by their business value to the
customer (high, medium, low), and by the development risk or the development
effort. High priority and high risk tasks should be dealt with first. The project veloc-
ity is the amount of developer-time available per iteration. Taking these factors into



46 3 Model-Based and Agile Development

Working increment
Product Backlog Sprint Backlog Sprint of the software

Fig. 3.9 Scrum process

account, it is possible to define an initial release plan: identifying which tasks will
be delivered by which iteration and by which developers. This plan will be revised
as development proceeds.

3.4.2 Agile Methods: Scrum

The Scrum method is now the most widely-used agile approach. It involves the
following key elements:

e User stories: requirements expressed in terms of capabilities needed by users of
the system in specific roles. The general template for a user story is

“As a [user role], I want to [goal], so that I can [achieve business value]”

E.g., “As a customer of the bank, [ want to view the balances of my bank accounts,
so that I can manage my finances”.

User stories are essentially use cases, and can be decomposed into subtasks/
subcases.

e Product Backlog: an ordered (in terms of priority) list of user stories/tasks relevant
to the project.

e Sprint Backlog: an ordered list of user stories/tasks to be completed in a sprint.

e Sprint planning: performed by the Scrum team before a sprint, the team agrees
the tasks to be worked on in the sprint, that is, the subset of the project backlog to
include in the current sprint backlog. The duration of this meeting is normally 2h
per each week of the sprint.

e Daily scrum: this daily meeting organises the activities of the team, reviews sprint
progress, and identifies issues. It is time limited (e.g., 15min) and often takes
place at the start of each day. It raises the key questions for developers: (i) what
did I achieve yesterday? (ii) what do I plan to achieve today? (iii) is there any-
thing blocking me from achieving my work? The meeting is also called the ‘daily
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Table 3.1 Schematic Scrum board structure

Product Sprint Under Completed Delivered
backlog backlog development

Task15 Task9 Task7 Task3 Task1
Task16 Task10 Task8 Task4 Task2
Task17 Task11 Task5

Task18 Task12 Task6

Task19 Task13

Task20 Task14

standup’ meeting. It is not for detailed discussion, problems identified should be
dealt with by a designated person following the meeting.

e Definition of done: a criteria to state when a task is completed. For example, that
the testing process for it has been completed and all bugs detected have been fixed.

e Sprint review: a review conducted by the team at the end of the sprint. It identifies
what work was completed and planned work that was not completed, demonstrates
completed work to the stakeholders, and involves collaboration with the stakehold-
ers to decide what should be in the following programme of work—for example
in which iteration remaining uncompleted tasks should be completed. A review is
recommended to last 1 hour for each week of the sprint it reviews.

e Sprint retrospective: after the sprint review, before the next sprint planning. It
analyses the achievements of the sprint, and considers ideas for improvement of
the development process. It is facilitated by the Scrum master and has a duration
of approximately 1.5h for each 2 weeks of the sprint.

Additional optional elements, such as an impediment backlog can also be included.

During a sprint, the team uses a Scrum board showing the tasks to do, in progress
and completed (for example, Table 3.1).

A Burndown Chart shows a graph of the estimated remaining work against time.

The key roles of the Scrum team members are:

e Product owner: this team member is a stakeholder representative in the team, and
is responsible for liaising between the technical staff and the stakeholders. The
product owner identifies required work items, identifies their priority, and adds
these to the product backlog.

e Development team: the workers who perform the technical work. The team should
have all needed skills and be self-organising. Typically there will be between 3 to
9 team members in this role.

e Scrum master: the Scrum master facilitates the Scrum process and events, and the
self-organisation of the team. This role is not a project manager role and does not
have personnel management responsibilities. They ensure that the Scrum process
is correctly followed in the development.
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3.4.3 Agile Methods: Extreme Programming (XP)

XP is an alternative agile approach, with a strong focus on the coding activity, in
contrast to Scrum, which emphasises the organisation of the development team and
process.

XP advocates techniques such as pair programming, where two programmers
work at one terminal, one having the role of reviewing the code of the other. Code
refactoring is also a key process in XP, to achieve the agile principle of “continuous
attention to software quality”.

XP consists of:

e 5 Values: communication, simplicity, feedback, courage, respect.

e 3 Principles: Feedback—via customer interaction and fine-grained testing; Assum-
ing simplicity—code that’s just good enough, small changes; Embracing change.

e 12 Practices: pair programming; planning game; test-driven development; whole
team; refactoring; small releases; system metaphor; simple design; continuous
integration; collective code ownership; sustainable pace; coding standards.

XP has been found more appropriate for small teams, including single-programmer
developments.

3.4.4 Agile Methods: Kanban

Kanban is a general manufacturing concept originating in the Japanese car industry:
the principle is only to produce what is needed when it is needed, not before; demand
is tracked through all production stages in order to manufacture to meet demand.
Adapted to software, it is an agile approach oriented to a continuous delivery software
production process. The approach uses demand-led production, the demand (such as
customer or user requests) determines the priority for work items.

An important principle is to limit the work-in-progress (WIP): developers work
only on few tasks—often just one—at a time. When the current task is finished, they
then start on the next highest priority task from the backlog.

Table 3.2 compares Kanban and Scrum.

Kanban uses Kanban boards, which are similar to Scrum boards, and may
have columns such as Backlog (tasks to be done next); In Development; Testing;
Customer Acceptance; Done.

With Kanban it is possible to have separate teams for separate development stages
(e.g., a specification and design team, and a coding and delivery team). The output
of one team is fed into the backlog of the next.
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Table 3.2 Kanban compared to Scrum

Kanban Scrum

No prescribed roles Roles of Scrum master; team member; product
owner

Continuous delivery Timeboxed sprints

Work pulled through system (single task flow) | Work performed in batches (sprint backlogs)

Environments with high variation in task Environments where tasks can be batched and
priorities worked on together

3.4.5 Benefits and Disadvantages of Agile Development

The State of Agile Survey of the software industry (versionone.com, 2017) has con-
sistently identified that the main benefits of agile development are: (i) the ability to
manage changing priorities; (ii) increased team productivity; (iii) improved project
visibility.

The majority of survey respondents found that agile projects were mainly suc-
cessful. Scrum is consistently the main method used, with iteration planning, daily
standups, retrospectives, reviews, short iterations, release planning the most common
techniques.

The following disadvantages of agile development have been identified:

e That it is focussed on manual coding—and hence is resource intensive.

e It is focussed on functional requirements and does not explicitly address non-
functional requirements.

e It does not emphasise reuse.

Generally, agile approaches minimise the use of documentation and formal architec-
ture descriptions, and verification is carried out only by testing or by code inspection.

The state of agile survey found that barriers to the adoption of Agile development
included:

Organisational culture in conflict with agile principles.
Lack of experience with agile methods.

Lack of management support.

Lack of access to users/customers.

3.4.6 Can Agile and MBD be Combined?

Both agile and MBD aim to accelerate development. Whilst agile focusses upon
rapid response to changing requirements, MBD focusses upon software correctness
and adding value over a longer term. In principle, the combination of agile and MBD
approaches could be effective and provide complementary strengths:
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e MBD provides modelling, verification and reuse support lacking in Agile.
e An agile MBD approach would use models as the primary artifact, not code,
reducing development costs and time.

But MBD tends to be a ‘heavyweight’ process with substantial use of documenta-
tion and multiple process steps. In particular, the use of multiple models in UML and
MDA hinder rapid specification change, since a change to one model may impact
others, and these inconsistencies need to be resolved before a new executable version
is generated. The agile emphasis on simplicity can be applied to reduce the complex-
ity of MBD, in particular to reduce the number of parallel models being maintained
for a system.

Several agile MBD approaches have been created [ 14, 15], including MDD-SLAP
at Motorola [6] and xXUML/fUML/AIf from the OMG [3]. In this book we will follow
an agile/MBD process based on the UML-RSDS subset of UML and its supporting
tools.

Summary

In this chapter, we:

e Introduced the concepts of UML, MBD, DSLs and Agile development
e Gave examples of their use in industry, and rationales for/against their use.

In subsequent chapters, we will use an agile MBD approach for developing financial
systems, based on UML.
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Chapter 4 ®
Financial System Specification e
Using UML

In this chapter we will explain how UML models can be used to specify financial
applications, using examples.
We will cover:

Class diagrams: classes, attributes, associations, inheritance, operations.
Use case models.

OCL (Object Constraint Language).

Specification revision and refactoring.

4.1 Class Diagrams

Class diagrams show the entity types of a system: the data types (classes) which have
instances (objects) with identities and internal structure. For example, Customer,
Account, etc (Figs.4.1, 4.4).

Value types include integers, reals, strings and booleans. These do not have
instances with identity or internal structure, but are simply values (although strings
can also be considered to be structured as sequences of characters).

Collection types include sets and sequences: sets are collections of elements which
have no ordering and no duplicates—it is only possible to ask whether an element x is
inthe set s (x : s) or notin the set (x ¢ s). Sequences sq have an order and allow dupli-
cates. Thus in addition to membership, we can obtain the ith element of a sequence
(sql[i]) and find out how many times an element x occurs in sq (sg— count(x)).
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Fig. 4.1 Example of class
specification C“StOlnel'

name: String = "'
age: double =0
address: String = """

4.1.1 Classes

Classes have a name (usually singular, with an initial capital), and they have a series
of attributes of value type. Class specifications formalise requirements such as “For
each customer, their name, age and address are recorded”.

Class diagrams can be used for initial conceptual modelling of a system, for
system specification, informal and formal, and as an executable specification in
MBD. Usually a UML class can be translated directly to a Java, C#, C++ class,
or to a C struct. For example:

class Customer

{ String name = ""
double age = 0;
String address = "";

}

in Java, for the class of Fig.4.1.

4.1.2 Attributes

Attributes represent intrinsic and permanent properties of an object (class instance).
The attribute value can change over time, but must always be of the declared type.
Attributes are usually written with a lowercase initial letter.

If att : T is declared in class C, and obj is an instance of C, then obj. att is a value
of type T.

We use the computational data types int (32-bit signed integers), 1ong (64-bit
signed integers) and double (double-precision floating point numbers) for numeric
values:

e int values are between —23! and 23! — 1 (—2147483648 to +2147483647).

e long values are between —2% and 293 — 1

e double values are assumed to satisfy the IEEE 754 floating point standard, and
range from —1.7976931348623157E + 308 to 4-1.7976931348623157E + 308.
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Fig. 4.2 Identity attribute
example Account

accountld: Slrm =TT 3 1denfity §
name: Strin
balance: double = 0

These correspond to the data types available in Java, C#, C++ and C, although
their sizes may vary in C and C++-. Using such datatypes (instead of abstract mathe-
matical Integer and Real types) reduces the semantic distance between specification
and implementation, and simplifies the verification of implementations against a
specification. The specifier must be aware of the bounded nature of the datatypes
and ensure that bounds are not exceeded during computations. In addition, exact
computations are not possible with doubles due to their bounded precision. The
String data type corresponds to the Java String and C# string types. String values are
written between double quotes as usual. Boolean values true and false are elements
of the type boolean.

Attributes of collection type are also possible, for example an attribute rates:
Sequence(double) could store a sequence of interest rates in successive time periods.

Identity attributes are special kinds of attributes eld: String which uniquely iden-
tify objects of their class (Fig.4.2). If objects el: E and e2: E have el.eld = e2.eld,
then the objects are the same (el = ¢2). This is related to the concept of primary
key for relational databases, and provides a means of looking up objects based on a
key value. Typically the id values are entered by a user in a user interface, and the
application then looks up the actual objects identified by these values, for example,
in a database.

‘We use the notation E[eval] for the instance of E with eld value eval, where eld
is the first identity attribute defined for E.

4.1.3 Enumerated Types

New finite value types can be introduced as enumerations in a class diagram. Distinct
named values are listed in an < enumeration >> rectangle (as for AccountKind in
Fig.4.3). The enumerated type can then be used as the type of attributes elsewhere
in the diagram (e.g., kind : AccountKind in the Account class).

4.1.4 Associations

Associations define relationships between classes, the elements of an association
are links or pairs objl — obj2 of instances of the source and target classes. There
should be multiplicities at both ends, and a role name at least at one end. The role
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Fig. 4.3 Enumeration = " —
example |4 UML-RSDS a lmb«. Ve

File Create Edit View Transform Synthesis

BV

deposit
savings

Account

name: saang = 7
balance: double = 0
overdraftLimit: double = 0
kind: AccountKind = cuirent

name at the target of the arrow (role2) is mandatory, rolel (at the start of the arrow)
is optional. Each role name becomes a feature of the class at the opposite end of the
association.

Associations formalise requirements such as “Each customer has a set of accounts,
and each account may belong to several customers” (Fig.4.4). The role name
accounts represents navigation from a customer to its set of accounts, likewise
customers is the set of customers linked to a given account. The arrow on the associ-
ation indicates that navigation in that direction must be supported by an implemen-
tation.

Association multiplicities specify how many objects of one class may be linked
to an object of another via the association (Table4.1).

The * notation means the role at that end is a set or sequence of objects of the class
at the end, of unspecified size. 0...1 means the role is a set/sequence of size < 1.
1 means it is a specific (non-null) object of the end class. In general a multiplicity
range a...b means that there can be between a and b number of objects in the
association end.

e If A™—* B for any multiplicity m1, then for each instance obj of A, obj.r is a set
(possibly empty) of B objects.
e E.g., c.accounts for customer c.

In terms of program code a 1 or 0...1 end is usually represented as a single object,
a * end is represented as a collection:
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Fig. 4.4 Association example

Table 4.1 Association Multiplicity | Meaning

multiplicities - - -

* Any finite number of objects at this end can
be linked to one object at the other end

0...1 At most one object at this end can be linked
to one object at the other end

0...n At most n objects at this end can be linked to
an object at the other end

1 Exactly one object at this end is linked to one
object at the other end

n Exactly n objects at this end are linked to one

object at the other

1...% At least one object at this end is linked to one
object at the other

class Customer

{ String name = "";
double age = 0;
String address = "";

Set<Account> accounts = new HashSet<Account> () ;

o If A™ ! B for some multiplicity m1, then for each instance obj of A, obj.r is a
single B object. These are referred to as many-one associations, if m1 # 1.

o If A ™l lordered) B then for each instance obj of A, obj.r is a sequence (possibly
empty) of B objects. Individual elements of r can be referred to as r—at(i) or r[i]

starting at i = 1.
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o If A™_0-1 B then for each instance obj of A, obj.r is a set of 1 or O (empty
set) of B objects, or an optional B object. We use the empty collections Set{} or
Sequence{} instead of explicit null values for obj.r at the specification level.

e One-to-one associations A '—! B are unusual, and represent a bijection between
A elements and B elements.

The case of a A ’”'—:”22 B association with neither m1, m2 being 1, is termed a
many-many association.
Bi-directional associations have role names r1 and r2 at both ends:

o IfA f_"ll—:”zz B then r1 is a feature of B, with multiplicity m1, and r2 is a feature of
A, with multiplicity m2.

e r1 and r2 depend on each other: if the pair a — b is in the association, then b is a
value of a.r2, and a is a value of b.r1.

e Maintaining this mutual consistency is difficult using hand-written code

e Bi-directional associations create strong semantic links between classes; so they
should only be used if they are essential to the modelling of a problem.

E.g., the Customer—Account relationship.

Aggregations are special kinds of association which model situations where one
class has a whole-part relation to another (e.g., a bond has a number of cash flows).
Aggregation is represented by a black diamond symbol at the ‘whole’ end. The
semantic effect is thatif a ‘whole’ object is deleted, so are all its linked parts (cascaded
delete). The multiplicity must be 1 or 0...1 at the ‘whole’ end.

4.1.5 Inheritance

Inheritances define specialisation/generalisation relationships between entities
(Fig.4.5). The inheritance arrow points from the subclass (specialised entity type)
to the superclass (generalised entity). No rolenames or multiplicities are written on
the line. The superclass is usually an abstract class: instances cannot be created for
it, only for its concrete subclasses. Abstract classes are shown by writing their name
in italic font (Customer in Fig.4.5).

It is possible to have multiple subclassing: several specialisations of the same
superclass (e.g., PersonalCustomer and BusinessCustomer as subclasses of
Customer). It’s more unusual to have multiple inheritance: several superclasses of
one subclass (e.g., HouseBoat as a subclass of both Residence and Boat), but this
is permitted in UML. All features of all superclasses are inherited by a subclass,
and operations of a subclass may override operations with the same name and input
parameter types in the superclass. In this respect, UML inheritance is the same con-
cept as Java extends and C++ public inheritance.

A leaf class is a class at the base of the inheritance hierarchy, with no subclasses.
Such classes should be concrete (not abstract) in a completed specification. A root
class is a class at the top of the inheritance hierarchy, with no superclasses.
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Fig. 4.5 Inheritance
example

—OStoThers

age: doubleg= 0
address: String = """
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I PersonalCustomer |
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If an object is a member of a subclass Sub, then it is a member of every superclass
(direct or indirect) Sup of Sub:

x:Sub = x:Sup

So, for example, if pc is a PersonalCustomer, it is also a Customer instance.

If abstract class A is a direct superclass of By,..., B, (and these are the only
direct subclasses of A), then if x : A, it must also be a member of exactly one of
the B;. Thus any Customer object must either be a PersonalCustomer instance or a
BusinessCustomer instance.

4.1.6 Operations

Operations of a class are either (i) query operations: these return a value computed
from the object data, and do not update the object state or (ii) updaters: which
modify object state (and may return a value). Operations can be specified by pre-
conditions and postconditions: expressions that define necessary assumptions at the
start of execution, and that define the result state (and possibly the return value)
at termination. Alternatively, behaviour can be defined by a statemachine or by an
activity/pseudocode.

In Fig. 4.6 totalFunds() : double is a query operation. withdraw(amt : double) is
an updater.

The operations can be specified by pre and post conditions:

query totalFunds () : double
pre: true

post:

oLl Z'yl_ilsl

lance) ->sum()
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Fig. 4.6 Classes with operations

Precondition true means the operation is always valid to execute.

withdraw(amt : double)
pre: balance - amt >= -overdraftLimit
post:

balance = balance@pre - amt

The withdraw operation should only be invoked if the condition balance — amt >
—overdraftLimit holds. The amt is then subtracted from balance. In the postcondi-
tion, balance @pre refers to the previous value of balance (the value at the time when
the operation is invoked). Operations can be defined in classes or in use cases. Call-
by-value semantics is used for parameters of basic data types (numerics, booleans,
strings). Changes cannot be made to the parameter within the operation. For object
and collection-valued parameters changes can be made to the contents of the param-
eter (attribute values of objects and membership of collections) and these changes
will be retained after execution of the operation.

Query operations must have a result type, and some equation result = e as the last
conjunct in each conditional case in their postcondition. Update operations normally
have no return type, but this is possible. Operations can be defined recursively, e.g.:

static query realfact(d : double) : double
pre: true
post:

(d <=1 => result = 1) &

(d >1 => result = d*realfact(d-1))

ol LElUMN Zyl_i.lbl
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Operations can be called by the notation obj.op(params) as usual. Such calls are
expressions, for query operations, and statements for update operations. If op is a
query operation then the expression can be used within other expressions as a value
of op’s return type. Update operations should not normally be used as values or
in contexts (such as conditional tests or constraint antecedents) where a pure value
expression is expected. Callers of an operation must ensure its precondition at the
point of call—otherwise an exception may occur in the generated code. If called
with its precondition satisfied, the operation then guarantees its postcondition at
termination.

Precondition conditions should be sufficient to ensure that postcondition expres-
sions are well-defined: that no division by zero or other undefined computation can
occur, and that numeric computations remain within the bounds of defined numeric
types.

Another example of an operation definition is the normal distribution function
N(m, 0)(x), from the NormalDist library:

static query normal (m : double, sigma : double,
x : double) : double
pre: sigma > 0

post:
disp = x - m &
denom = ( -0.5*disp*disp/ (sigma*sigma) )->exp() &
num = sigma* (2*MathLib.pi())->sqgrt() &

result = denom/num

Note that sigma > 0 is needed in the precondition, to ensure the definedness of the
postcondition.

Local variables such as disp can be introduced (in query operations) by an equation
var = value and then subsequently used in the postcondition. A pre-state expression
f @pre for a feature f of the owning class can be used in operation postconditions
and use case postconditions. In an operation postcondition, f @pre is the value of f
at the start of the operation—this is the same value as denoted by f in the operation
precondition. Occurrences of f without @pre in the postcondition refer to the value
of f at the end of the operation.

So, for example:

op ()
pre: b > a
post: b = b@pre * al@pre

multiplies b by a. Since a itself is not updated, there is no need to use pre with a,
and this operation should be written as:

op ()
pre: b > a
post:b = Db@pre * a
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NormalDist
ROTINALL...): doubIe

Fig. 4.7 Static operations and attributes

The keyword static in the above definitions of realfact and normal indicates that
the operation is defined on a class, independently of particular instances. Static oper-
ations are also known as class-scope operations, in contrast to instance-scope oper-
ations. Static operations op of class E are invoked using the class name: E.op(pars).

Attributes may also be static, this means that every object of the class sees the
same value for the attribute. Both static operations and static attributes are underlined
in class diagrams (e.g., Fig.4.7).

Another static operation example is a random number generator, from MathLib:

static random() : double
pre: ix > 0 & iy > 0 & iz > 0

post:
ix = (ix@pre*171) mod 30269 &
iy = (iy@pre*172) mod 30307 &
iz = (iz@pre*170) mod 30323 &
r = ( ix/30269.0 + iy/30307.0 + 1z/30323.0 ) &

result = r - r.floor

This is a static operation which updates the ix, iy, iz static int attributes each time it
is called. These need to be initialised to suitable seed values.

4.2 Use Case Models

Use case models define the functionalities of a system, the services it provides to
users. Each use case has a name, written in an oval, and linked to agents/actors who
interact with the case. E.g., checkBalance is a use case that can be used by customers
or bank staff, whilst createAccount is only for staff (Fig.4.8).

Use cases are defined by a sequence of steps, each step can perform operations on
objects of the system. Use cases coordinate object behaviours to produce an overall
required functionality. E.g., checkBalance(ald : String) has these steps:
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Fig. 4.8 Use case model example

Lookup account with accountId = aId;
Display balance of this account;

createAccount(cld : String, ald : String) has the steps:

Lookup customer with customerId = cId;
Create a new account with accountId = aId;
Add this account to the customer accounts;

These are examples of normal behaviour, there may also be alternative sequences of
actions for abnormal situations, such as where there is no account with accountld =
ald in the checkBalance(ald) case.

Use cases can have preconditions, logical conditions that express in what situations
the use case is valid to execute. E.g., createAccount(cld : String, ald : String) has
the precondition that no account already exists with accountld = ald. Use cases can
also have postconditions, defining their effect and result by a series of expressions.

4.3 OCL (Object Constraint Language)

OCL is the expression language used with UML, it can define logical conditions
for preconditions, postconditions, invariants and other specification elements. OCL
expressions have values of numeric, boolean, string, entity or collection types. The
main use of OCL is to precisely define operation and use case functionalities.

The OCL standard numeric value types are Integer and Real. However in this book
we will mainly use computational data types int, long, double. The string value type
String ranges over sequences of characters. The usual numeric operators +, —, *, /,
<, >, <, > and functions r.sqrt(), r.cos(), r.pow(p), are present in the OCL library.
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In UML-RSDS, mathematical functions of one argument can also be written
without brackets: r.sin.cos, etc, when applied to simple expressions, or as r—f () for
more complex expressions r, €.g., (x + ¥ x x)—>sqrt().

String functions include s.size(), + (concatenation), s.foLowerCase() and oth-
ers. Boolean values are true and false, with the usual operators of conjunction &,
disjunction or, negation not, and implication =. OCL specifies that short-circuit
evaluation should be used for &, as in programming languages: if the first argument
is false then the second argument is not evaluated. Similarly for or. A conditional
expression if e then el else e2 endif returns the value of el if e is true, and the value
of e2 if e is false.

Entity types can be used as follows in UML-RSDS:

e If Fis aclass diagram entity type, instances e of E can be used in OCL expressions,
and feature values e.att, e.role of e. Objects can be compared with =, / =

e A constraint with context E can refer directly to features of E. The context class
is written before two colons, as:

constraint

Within constraint the features of E can be used without an object reference (implic-
itly they are features of the self object of E).
For example:

Account::
balance >= -overdraftLimit

as an invariant of Account

e In the context of class E, the self object denotes an instance of E.

e The pre and postconditions of an instance-scope (non-static) operation of class E
have context E.

e The inbuilt operation createE() : E returns a new instance of a class E, for classes
without an identity attribute.

e createByPKE (v : String) : E looks up and returns (or creates and returns if no E
instance with key v exists) the instance E[v] of a class whose first identity attribute
has value v.

e Objects of a class E can also be introduced by a let expression:

let e : E = createE() in cond

Collection types include:

e Set(T)—the type of sets of T: a set Set{vy, ..., v,} is an unordered collection of
elements, with no duplicates (each element occurs only once).
e Sequence(T)—the type of sequences of T: a sequence Sequence{v, ..., v,} has

elements.in the listed order. Elements.can occur multiple times.
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E.g., Set{1,9,9, 1} only has 2 elements: Set{1, 9}, whilst Sequence{1, 9, 9, 1} has
4 elements.
Collection operators use the — symbol before the operator name:

s—size() is the size of collection s

s—sum() is the sum of elements of collection s (of numbers/strings)

s—prd() is the product of elements of collection s (of numbers)

x :s 18 true if s contains element x, false otherwise. This is also written as
s—includes(x).

e s—at(i) is the ith element of sequence s, which we also write as s[i].

E.g.,9: Set{1,9,9, 1} and Sequence{1,9,9, 1}—sum() = 20.
Some collection operators are particularly useful in financial system specification:

e s—collect(x | e) is the sequence of values of expression e produced by applying
e to the elements x in collection s. The order of the result will be the same of the
order of s, if s is a sequence.

This is akin to applying a function e to each member of a vector or matrix in
Matlab, for example.

e s—select(x | P) is the subcollection of collection s which consists of all the x : s
that satisfy P.

e s—reject(x | P) is the subcollection of collection s which consists of all the x : s
that do not satisfy P.

The x argument in these operators can be omitted.
E.g., in the bank account example (Fig.4.6),

accounts— collect(balance)
is the sequence of balance values for a customer’s accounts, and
accounts— select(balance > 0)

are the accounts that are not overdrawn.

Operators can be chained, eg: accounts— collect(balance)— sum() is the sum of
balances of accounts of a customer. Since s— collect(e¢) always produces a sequence
of values, one for each element of s, duplicate values of e for different elements of s
are distinguished and added correctly in such sums.

Quantifiers can also be applied to collections:

e s—forAll(x | P)istrueif every element x of collection s satisfies P, false otherwise
o s—exists(x | P) is true if some element x : s satisfies P, false otherwise
e s—exists1(x | P) is true if exactly one element x : s satisfies P, false otherwise.

E.g., Set{1,9,9, 1}—forAll(x | x < 10) is true.
Sums and products over ranges of elements are defined by:
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e Integer.Sum(a, b, i, €) corresponds to X7 e
e Integer.Prd(a, b, i, ) corresponds to l'[ib:ae

The sequence of integers a..b is written as Integer.subrange(a, b). This is Sequence
{a,a+1,...,b}.
In UML-RSDS, expressions can also be used to define behaviours:

x = v can be interpreted as “Set the value of x to v”

x : s can be interpreted as “Add x to collection s”

s—forAll(x | P) as “Make P true for every element x of s"

E—exists(x | P) for concrete entity type E as “Create an instance x of E and
initialise it to satisfy P”

s—display() displays the value of s

s—isDeleted () removes the object or collection of objects s from the application.

This enables us to use OCL expressions to define the behaviour of operations and
use cases, for example the withdraw operation definition given above. For use cases,
postconditions of the use case can be written sequentially to define the steps of the
use case in a logical manner, for example:

e checkBalance(ald : String):

ald : Account->collect (accountId) =>
Account[aId] .balance->display ()

ald /: Account->collect (accountId) =>
("No account with id = " + aId)->display()

This use case has two postcondition constraints, neither has an entity context, so
their context is written as ::. The first postcondition executes in the case that there
is an account with the given id value ald (normal behaviour of the use case), the
second in the case that there is not (error behaviour).

e createAccount(cld : String, ald : String):

customer = Customer[cId] =>
Account->exists( a | a.accountId = aId &
a : customer.accounts )

This constraint looks up a customer : Customer Object by its id value and creates
(or finds) an a : Account object with id = ald, and adds a to customer’s accounts.
Instead of defining error behaviour for the case

cld ¢ Customer— collect(customerld)
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we can assert a precondition for this use case:

cId : Customer->collect (customerId)

It then becomes the responsibility of the caller of the use case to ensure that this
precondition holds true at the point of call.

4.4 The Financial Specification Process

Given a new financial modelling or computational problem, the following steps can
be followed (by an individual or team) to create a precise specification model for the
problem:

e Carry out necessary background research to understand the context of the problem
and the purpose of the task.

e Define an initial requirements specification based on financial concepts and rele-
vant mathematics.

e Define (or reuse) a class diagram to represent the financial concepts and data
involved in the problem.

e Describe informally the functional elements (operations and use cases) using the
class diagram and mathematical theory as a basis.

e Formalise—express in a machine-readable form—the requirements specification
and functional specifications to define exploratory prototypes operating on the data
of the class diagram, which solve parts of the problem or simple cases of it.

e If the specification language is executable, then the prototypes can be executed
and tested. Otherwise they can be checked by inspection and walkthroughs of their
behaviour in particular scenarios.

e Progressively extend the prototypes to solve the complete problem, using real data
where possible to test or check them.

At each stage, refer to stakeholder representatives, who should include (i) an expert
in the specific finance domain; (ii) a customer representative who has detailed knowl-
edge of how the application is intended to be used. One person may fulfil both roles
(i) and (ii). Consideration should be given to stakeholders who may not be formally
represented, but nonetheless are potentially affected by the application. It is particu-
larly important to collaborate with a domain expert when defining the class diagram,
which should accurately express domain concepts and terminology.

In the case of an executable specification language, the result of the above pro-
cess is an executable specification which passes the user tests, but which may be
inefficient, and may have poor structuring or other quality flaws. Further stages of
refactoring (Sect.4.7), redesign and optimisation may be needed before the applica-
tion can be delivered.
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4.5 Case Study: Estimating Internal Rate of Return (IRR)

Recall from Chap. 2 that the IRR or yield of a bond measures the quality of the bond
as an investment: the effective rate at which the investment returns value over its
term. We can model investments such as bonds by a class Investment which has an
associated sequence of cash flows: for a bond these flows will consist of an initial
payment (a negative cash flow), followed by coupon payments (positive cash flows
to the investor), and repayment of the principal at end of the term (futureValue in
Fig.4.9). E.g.: an investor could invest £100 in a fixed-coupon bond for a term of 10
years, for a price (presentValue) of £110, receive 8% annual interest bi-annually (20
payments of £4), and £100 capital repayment at the end of the term.

We will record the coupon payments in the flows sequence, so that in terms of this
model, the IRR is the (minimal) rate » such that:

presentValue = Efzoimmeﬂows[i].amount (1 + p)flowsliltimePoint

futu re leME/ ( 1+ r)ﬂows.lasl.rimePoint

The right hand side is used as the definition of an operation

query totalValue(r : double) : double
pre: r /= -1
post:
result = Integer.Sum(l,flows.size, 1,
flows[i].amount/ ((1 + r)->pow(flows[i].timePoint))) +
futurevalue/ ((1 + r)->pow(flows.last.timePoint))

which returns the total positive cash flows from the bond.
A version of the IRR equation using continuous compounding of interest is:

presentValue = Z‘{’:" U flows[i].amount % e~ *flowslil-timePoint:

futureValue % efr*ﬂows.last.timePoint

Time can be measured in days, months, years, etc—r will be the rate with respect to
this measure. Generally, r can be estimated by numerical approximation techniques,
e.g., the bisection or secant methods, or by genetic algorithms. The above model and

CashFlow
Investment *~amount: double = U
resentValue: double = 0 i_____mm% timePoint: double =0
utureValue: double =0

internalRate: double = 0

Fig. 4.9 Investments class diagram
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operation apply to any investment which has a series of cash flows, including fixed
coupon and variable-coupon bonds.

We can give an informal specification of a use case to compute the IRR for a fixed
coupon bond by listing the following steps:

1. Create an Investment instance inv with presentValue as the given price.

2. Create term * frequency cash flows, each with the amount coupon/frequency and
time point (i x 1.0)/frequency for the i’th flow. Add these in their time order to
flows.

3. Set futureValue to the amount 100 representing the principal (the capital invest-
ment).

4. Apply the secant procedure from a suitable starting value 70 > Oandr0 < 1, using
the difference between inv.presentValue and inv.totalValue(r) as the function to
minimise. This difference represents the net present value of the bond.

We can define the general secant procedure using the recursive operation:

static query secant(f : Function, rn : double,
rminus : double, fminus : double, tol : double) : double
pre: tol > 0
post:
fn = f.apply(rn) &
(fn.abs < tol => result = rn) &
(fn.abs >= tol =>
result = secant(f, rn - fn*((rn-rminus)/ (fn-fminus)),
rn, fn, tol) )

The parameter rn is the current best approximation to the root, rminus is the
previous value of rn and fminus is f (rminus).

This function is provided in the NumericOptLib UML-RSDS library (Fig.4.10).
The function approximates a root of f, ie., a value r such that f (r) = 0. Here, f (rn) is
abs(inv.presentValue — inv.totalValue(rn)) for an investment inv. tol is the tolerance
or level of approximation to the root. Typical tolerance values are 0.001, 0.0001, etc.
The smaller the tolerance, the more iterations of secant are needed.

The final step of the IRR use case can therefore be expressed as the following
constraint, which computes initial values for the secant procedure using the payout
of the bond (toralValue0), and invokes it using a NetPresentValue function:

Investment::
totalvValueO = flows->collect (amount)->sum() +
futurevalue &
rl = (totalValueO/presentValue)->pow(2.0/(flows.size + 1))
-1&
totalvaluel = totalValue(rl) &
p = ((totalvalueO / presentValue)->log()) /

((totalvalue0 / totalValuel)->log()) &
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Fig. 4.10 Secant for IRR

r2 = (1 + rl)->pow(p) - 1 =>
NetPresentValue->exists( f | f.inv = self &
NumericOptLib.secant (f, r2, ril,
totalvaluel - presentValue, 0.001)->display() )

NetPresentValue inherits from Function and has apply defined as:

query apply(x : double) : double
post:
result = (inv.presentValue - inv.totalValue(x))->abs()

A specific instance f of NetPresentValue is created in the constraint, and secant
is invoked with f as the first argument. Termination/convergence of secant is not
guaranteed in general. Bisection or genetic algorithm methods can instead be used.

To test this application, a Java implementation of the UML-RSDS specification
was used, and applied to a test case of 8§ coupon bonds ranging from 1 year to 12
year terms:

BondId, Settlement, Maturity, Price, Coupon, Frequency

"1" , 1999 , 2000 , 103.78 , 6.5 , 2
2" , 1999 , 2001 , 106.72 , 8.0 , 2
"3" , 1999 , 2002 , 112.58 , 10.0 , 2
"4 , 1999 , 2003 , 98.53 , 5.5, 2
"5" , 1999 , 2004 , 107.68 , 8.0 , 2
"6" , 1999 , 2006 , 108.46 , 8.0 , 2
7", 1999 , 2009 , 101.07 , 7.0 2

"8" , 1999 , 2011 , 93.11 , 6.0 , 2
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The computed yield values for these are:

BondId, Yield

"1" , 0.0448200657634527
"2" , 0.06058085141979801
"3" , 0.07333535911340823
"4" , 0.05734245546660278
"5" , 0.06911033292597388
"6" , 0.07030851391741318
7" , 0.06899785164137454
"8" , 0.06578688900172859

where (.04 represents 4% yield, etc.

4.6 Case Study: Macaulay Duration of a Bond

The Macaulay duration of a bond is the time to maturity of the equivalent zero-
coupon bond, or the weighted average time to payment. It weights the time of positive
cash flows by their amount, to obtain a time point at which all the payments can be
considered to occur together:

duration = (Z‘fﬂvs'meﬂows[i].timePoint * flows[i].amount %
e—yield*ﬂows[i].timePoint) /

(EﬁOY&SiZEﬂOWS[i] amount % efyield*ﬂows[i].timePoint)
= °

using continuous compounding, where we now include the principal repayment in
flows.

This computation can use the previously-computed yield value (the IRR) of each
bond, this is stored in internalRate. A version of the duration calculation using
discrete compounding is:

duration = (E{lzo ;”'sizeﬂows[i].timePoint *
flows[il.amount /(1 + yield)/'owslil-timePointy /

( Z‘f;’;”'meﬂows[i].amount /(1 + yield)/towstil-timePoint'y
The computation is formalised as an operation

query macaulayDurationC () : double
post:
pv = totalValueC (internalRate) &
dur = flows->collect( £ | f.timePoint * f.amount *
(-internalRate*f.timePoint)->exp() )->sum() &
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of Investment, for the continuous version, where rotalValueC uses continuous com-
pounding of the yield. A discrete compounding definition is:

query macaulayDuration () double
post:
pv = totalValue(internalRate) &
dur = flows->collect( £ | f.timePoint * f.amount /
(1 + internalRate)->pow(f.timePoint) )->sum() &
result = dur/pv

The computed durations for our example bonds are:

BondId, Yield, Duration

"1" , 0.0448200657634527 , 0.9844067709167799
"2" , 0.06058085141979801 , 1.8896640585964184
"3" , 0.07333535911340823 , 2.6770012951695747
"4" , 0.05734245546660278 , 3.6423011566865124
"5" , 0.06911033292597388 , 4.235571418580719

"6" , 0.07030851391741318 , 5.531443157037469

7", 0.06899785164137454 , 7.352752247451705

"g8" , 0.06578688900172859 , 8.611712068377704

4.7 Specification Revision and Refactoring

Class diagrams and other models can be refactored to improve their structure, to
remove redundancies and improve their correspondence to requirements. Refactoring
is particularly important in an agile development approach, where it is usually applied
on code. Some typical refactorings are [1]:

e “Pull up attribute” refactoring: if all (at least 2) direct subclasses of a class E declare
an attribute att : T with the same name and type, replace these declarations by a
single definition of arf in E (Fig.4.11).

e “Move operation” refactoring: if an operation op of E refers to the attributes/roles
of alinked class F via an association E—,F, try moving op to F (Fig.4.12) so that
op can use these features without navigation via r.

e “Merge classes”: if there are several direct subclasses of a class C, all empty,
replace these subclasses by a flag attribute of C of enumerated type. If C has no
further subclasses, make it a concrete class (Fig.4.13). E.g., this transformation
could be applied for the Customer class in Fig. 4.6.

‘Move operation’ is relevant to the IRR computation problem. In the definition of
totalValue there are multiple references to features of flows[i] objects:
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Fig. 4.13 Merge classes refactoring
query totalValue(r : double) : double
pre: r /= -1
post:
result = Integer.Sum(l,flows.size, 1,
flows[i] .amount/ ((1 + r)->pow(flows[i].timePoint))) +

futurevValue/((1 + r)->pow(flows.last.timePoint))

oLl Zyl_i.lbl
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This can be improved by defining an operation discountedAmount(r : double) :
double of CashFlow and moving the references to flows[i] features into this opera-
tion:

query discountedAmount (r : double) : double
pre: r /= -1
post:

result = amount/((1 + r)->pow(timePoint))

totalValue can then be simplified to:

query totalvValue(r : double) : double
pre: r /= -1

post:
result = Integer.Sum(l,flows.size, 1,
flows[i].discountedAmount (r)) +
futurevalue/ (1 + r)->pow(flows.last.timePoint)
Summary

In this chapter, we have:

Introduced the essential UML class diagram notations.

Introduced use case concepts.

Introduced core OCL features and uses.

Illustrated financial system specification with two small examples based on real-
world problems.

Considered class diagram model refactoring.

Exercises

1. How would the banking example be modified if accounts could only be associated
with 3 customers at most?

2. Use a — select or — reject to express the collection of a customer’s accounts which
are overdrawn, ie., with balance < —overdraftLimit.

3. Extend the class diagram of Fig. 4.6 to include a class Transaction: for each account
there is a sequence of transactions, which record the kind of operation (withdraw
or deposit) and the amount of the transaction. Each transaction can be for 1 or 2
accounts, a main account is the account on which the action takes place, a secondary
account is present if funds are being transferred from/to another account in the same
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4. Give the definition in OCL of an operation sumsqdiffs(s1 : Sequence(double), s2 :
Sequence(double)) : double which computes the sum of squared differences
Z'le'f’ze (s1[i] — s2[i])? of two sequences of doubles, of the same length.

5. Instead of using secant, another technique for finding the IRR is bisection: dividing
arange of possible values in half repeatedly until a solution is found (within a degree
of precision):

static query bisection(f : Function, r: double,
rl: double, ru: double,
tol : double): double
pre: true
post: v = f.apply(r) &
( (ru - rl < tol => result = r ) &
(ru - rl >= tol & v > 0 =>
result = bisection(f,( ru + r ) / 2,r,ru,tol) ) &
(ru - rl >= tol & v < 0 =>
result = bisection(f,( r + rl ) / 2,rl,r,tol) ) &
( true => result =1 ) )

f is assumed to be decreasing on the interval [r/, ru]. Does this approach always

converge for the function f defined as the net present value of an investment?
Assuming that ru = 1 and rl = O initially, how many iterations are needed to

reach a result in the case that there is convergence?

6. How do you think the use of executable specifications helps to ensure the correct-

ness of an application, compared to non-executable specifications?

7. What is the advantage of refactoring at a (platform-independent) specification
level, compared to refactoring at the code level?

Reference

1. M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of
Existing Code (Addison-Wesley, USA, 1999)




Chapter 5 ®)
Financial System Design oo

This chapter will describe the design of financial software using an agile MBD
process. We will consider software design quality, design patterns and software reuse,
and describe the QuantLib finance library.

5.1 Agile Development Process

In general, we recommend the use of an agile model-based development process for
financial system development, based on the Scrum process or other agile approach,
but with work focussed on writing specifications, not code (Fig.5.1). Product and
sprint backlogs are used, and for each work item within a sprint there are three stages
of development: (i) requirements and informal specification; (ii) formal specification
and design; (iii) integration and testing.

In agile approaches, the customer representative has a key role in ensuring that
what is being developed actually meets the customer and user needs. Ideally, they
participate directly in the development, giving immediate feedback on models and
prototypes.

Scenario analysis and executable prototyping can be used at stages (i) and (ii)
to identify the specific functionalities and behaviours required from the system, in
conjunction with the customer representative. Formal specification and design con-
sists of writing a precise machine-readable version of the informal specification, and
organising this in a modular manner. For example, defining small cohesive units of
functionality as operations within particular classes, and allocating responsibilities to
classes. Components consisting of several classes and providing operations through
apublic interface can also be defined. Such components should ideally be suitable for
reuse in other contexts and applications. For example, a component for computing
properties of investments, such as yields.
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The specification can be validated by inspection, walkthroughs and testing, and
refactored to improve its structure, as discussed in the previous chapter.

If a new requirement is introduced which affects existing functionalities, then
impact analysis for this change is also carried out in stage (i). At each stage we look
for reuse opportunities from existing libraries or previous applications in a product
family, and at stages (ii) and (iii) we can consider contributions of operations or
components from this development to the library. In addition to the usual Scrum
roles of development team, customer representative and Scrum leader, additional
roles of a MBD expert and a specification library manager are needed. For projects
requiring supporting tool development, an additional tooling team is needed to work
in liaison with the main project team to provide support tools and enhancements
needed by the team. For example, tools to provide necessary data format conversions
or specialised code generation capabilities. The tool support team also works in
an agile MBD manner to produce the necessary tools (right hand side of Fig.5.1).
Their customer representative is from the main development team (left hand side
of Fig. 5.1).

Generally, the scope of a finance project will include a number of financial
domains, such as option pricing, bond pricing, etc. There will usually be existing
mathematical models of the domains which may need to be adapted or specialised
for the project. Class diagram models and libraries of operations for the domains may
already exist prior to a project, in which case they can be reused and extended as
necessary. Otherwise, a new model of the financial and computational elements will
need to be created. In the case of work items which are financial procedures, stage

" customer
Initialisation

product backlog deliverables
Application development Tooling support
iterations iterations

Requirements and Requirements and

product backlog
| —

deliverables

new/updated new/updated
components reuse components reuse

( Libraries, reusable components, DSLs, platform specfications )

Fig. 5.1 UML-RSDS agile MBD process
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(i) involves eliciting functional and non-functional requirements from all stakehold-
ers, and expressing the steps of the procedure in natural language, with terminology
based upon the class diagram and mathematical models. In stage (ii) this specifica-
tion is reviewed and formalised as a UML-RSDS use case, where the steps become
successive postcondition constraints written in OCL. These constraints typically use
operations from the classes of the class diagram.

In stage (iii) code is generated from the specification and tested. The specification
is then revised as necessary until the requirements are met, including non-functional
requirements such as efficiency and modularity.

5.2 Optimisation

We recommend the use of the specification of a system to also define its design and
implementation. This has many advantages:

e The implementation can be tested at the same time that the specification is
validated—the two processes are the same.

e A single artifact is used to define the system, instead of separate specifications and
code, which would need to be maintained together and kept in alignment.

e A system implementation can be produced for any platform which has an available
code generator. It may be necessary to write a new generator or to adapt an existing
generator.

e The system can be maintained and enhanced by changing the specification, a task
that is usually much faster than changing code.

e Refactorings and optimisations applied to the specification will be automatically
applied to any implementation.

However, a disadvantage is that the clarity of the specification is sometimes in
conflict with its efficiency, hindering the use of the same artifact for both specification
and code generation. In UML-RSDS the architecture of generated code is fixed, and
cannot be modified by the developer. However they can organise the definitions of
use cases, classes and operations as they wish.

In general, to optimise a specification, we recommend:

e Avoid the use of recursive operation definitions where possible. Provide a non-
recursive activity definition in cases where the specification (operation postcondi-
tion) is recursively defined.

e If query operations are frequently called with the same arguments, make the oper-
ation cached: this means that computed results are stored in a map and looked-up
instead of being recomputed on subsequent calls. This applies for operations with
discrete-valued arguments, and may be less beneficial for operations with double-
valued arguments.

Using these techniques, we have found that it is possible to produce generated code
that is.more efficient than hand-crafted code for the same application [1].
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5.3 Case Study: Bootstrapping of Interest Rates

Interest rate bootstrapping is the process of calculating interest rates for all periods
over a given range, starting from a number of known rates. Bootstrapping is one tech-
nique for creating a yield curve from market data, however it can be less systematic
than approaches which fit a curve based on a parameterised formula (such as the NS
or NSS models) to the data.

In general, a coupon bond with present value price and term m years will make
m x frequency regular coupon payments (positive cash flows) over its term, together
with repayment of the principal at the end of the term. We can generalise this situation
to consider any Investment with a present value (price) and future value (the princi-
pal repayment at term), and a sequence of cash flows of an amount at a timePoint
(Fig.5.2).

Each payment is discounted by a factor flows[i].discount dependent upon the
annual interest rate flows[i].rate for the period 0 to flows|i].timePoint:

CashFlow ::
discount = 1/(1 + rate)— pow(timePoint)

and therefore
CashFlow ::
rate = discount— pow(—1/timePoint) — 1
Because the present value (price) should be equal to the sum of discounted pay-
ments, we have the equation:
presentValue =

Integer .Sum (1, n — 1, i, flows[i].amount * flows|i].discount) +
(100 + flows[n].amount) * flows[n].discount

B UML-RSDS and UMLZWeb Tools, Version 1.8
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Fig. 5.2 Extended investments class diagram
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where n = flows.size. Using this equation we can deduce from the rates and discount
factors for i = 1...n — 1 the discount factor for n, which can be computed as:

flows[n].discount =
(presentValue — Integer.Sum(1,n — 1,1,
Sflowsli].amount x flows|[i].discount))/
(100 + flows[n].amount)

Recall that Integer.Sum(a, b, i, ¢) computes the sum Z’i”zae where e depends on
i. The rate for n can therefore be derived from known rates for 1 up to n — 1, and
used to derive further rates when bootstrapping is applied to investments with longer
terms.

Therefore, if the discounts for the time points flows[1].timePoint, ... flows[n —
1].timePoint are already known, for bonds with the same settlement (starting) date
and provided by the same issuer, we can define a financial procedure for bootstrapping
the discount and rate for flows[n].timePoint, using a fixed coupon bond from the same
issuer and with the same settlement date, as follows:

1. Create an Investment instance and initialise its presentValue, term, frequency and

period.

2. Create the positive cash flows of the bond from the coupon payments for the term.
The amount of each coupon payment is coupon/frequency and the time of the ith
payment is i x 1.0/frequency.

. Initialise the known discounts and rates of the flows from 1...n — 1.

4. For the flow at n compute its discount and rate using the bootstrapping formula.

W

Assumptions made are that the repayment made at the end of each term is 100
(i.e., 100% of the principal) and that the price, frequency and known rates are all
positive. We assume also that the bond is newly issued and does not have accrued
interest.

The formalised specification is then defined by the postconditions of a use case
bootstrap.

The input parameters of the use case are price, term, coupon, all double val-
ues, and integer frequency. An input parameter known : Sequence(double) with
known.size = floor(term * frequency) — 1 holds the known interest rates. The use
case has postconditions:

Investment->exists( b | b.presentValue = price & b.term = term &
b.frequency = frequency & b.period = 1.0/frequency )

Investment: :
i : Integer.subrange(l, (term*frequency)->floor()) =>
CashFlow->exists( f | f.amount = coupon/frequency &
f.timePoint = i*period & f : flows )
Investment: :

i : Integer.subrange(l, known.size) =>
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flows[i].rate = known[i] &
flows[i] .discount = 1/((1 + known[i])->pow(flows[i].timePoint))

Investment::
n = flows.size =>
flows[n] .discount =
(presentValue - Integer.Sum(l, n-1, i,
flows[i] .amount * flows[i].discount@pre) ) /
(100 + flows[n].amount )

Investment: :
n = flows.size =>
flows[n].rate = flows[n].discount->pow(-1/flows[n].timePoint) - 1

The use case constraints are similar to the finance theory equations, and simply
express these in OCL notation. Thus it is direct to validate the specification against
the theory. Note that discount @pre is used in the fourth constraint because discount
is both read and written in the constraint, so the pre annotation is needed to avoid a
fixed-point implementation being used. We can avoid this problem by factoring the
inner computation into an operation of CashFlow, as with the IRR case study.

The outcome of the bootstrapping process is that interest rates can be inferred for
all annual durations up to the longest bond term in the market data set. For durations
which fall between the annual time points of market data items, linear interpolation
of the yields can be used. A similar bootstrapping procedure can be used for other
financial products.

5.4 Libraries and Reuse

During development, a project team may identify useful functionalities and compo-
nents which could be reused in future projects. Such functions and components can
be added to appropriate library classes and models. There are two different ways of
defining libraries with MBD: (i) platform-independent explicit specifications of the
library components can be given, from which implementations in different program-
ming languages can be automatically generated; (ii) the libraries cannot be specified
in a platform-independent manner, e.g., because they use platform-specific aspects
such as graphics or file system operations. In this case the component operations
can be given an interface specification (only their signatures are defined), and sepa-
rate implementations are provided for each platform (e.g., by hand-written code). Of
course, since this involves more manual coding effort, option (i) is preferable where
possible.

An example of the first case is the identification of mathematical functions
isPrime(n : int), factorial(n : int) : long, combinatorial(n : int, m : int) : long “n
choose m”, gcd(n :int,m : int) : int and Icm(n : int,m : int) : int as useful for
potential reuse during a project. These operations could then be defined in a language-
independent mathlibmm.txt model to include in future applications.
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A class MathLib can be created with these functions as static operations (Fig. 5.3).
Since the functions are to be widely used, care should be taken to ensure their
efficiency and correctness.

isPrime is defined as:

static query isPrime(n: int): boolean
pre: true
post:
(n < 2 => result
(n = 2 => result
(n > 2 =>
result = Integer.subrange(2, n.sqrt.floor)->forall (
i | nmod i >0))

false) &
true) &

In the final clause, n is considered prime if no number between 2 and n.sgrt.floor
divides it.

For the factorial and combinatorial operations, the Integer.Prd(a, b, i, ) operator
can be used to compute the product /77 e, to optimise these operations, instead of
using recursion. The precondition x < 20 is needed for factorial to prevent numeric
overflow, since the factorial of 21 is larger than the maximum long value. Likewise
for combinatorials.

static query combinatorial(n: int, m: int): long
pre: n > m &m > 0 & n <= 25
post:

(n -m<m =>

oLl Zyl_i.lbl
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result = Integer.Prd(m+1l,n,i,i)/Integer.Prd(l,n-m,j,j)) &
(n - m>=m =>
result = Integer.Prd(n-m+l,n,i,i)/Integer.Prd(1l,m,j,J))

static query factorial(x: int): long
pre: x <= 20
post:

(x < 2 => result =1 ) &

( x >= 2 => result = Integer.Prd(2,x,i,1) )

For gcd, there is a well-known recursive computation:

static query gcd(x: int, y: int): int
pre: x >= 0 &y >= 0

post:
(x = 0 => result =vy) &
(y = 0 => result = x) &
(x =y => result = x) &
(x <y => result = MathLib.gcd(x, y mod x)) &
(y < x => result = MathLib.gcd(x mod vy, vy))

Such recursive computations should be avoided where possible in libraries, for
efficiency and robustness reasons, and instead replaced by explicit algorithms:

static query gcd(x: int, y: int): int
pre: x >= 0 &y >= 0
post: true
activity:
1 : int ; k : int ; 1 :=x ; k :=y ;
while 1 /= 0 & k /=0 & 1 /= k
do
if 1 < k then k := k mod 1
else 1 := 1 mod k ;
if 1 = 0 then result := k
else result := 1 ;
return result

The recursive definition can be retained as documentation, but the activity will be
used for code generation. combinatorial, factorial and gcd can be defined as cached
operations, for additional efficiency. Note that an explicit declaration of result is not
needed in the activity of a query operation.

From the gcd, the lem can be directly calculated:

static query lcm(x: int, y: int): int
pre: x >= 1 &y >=1
post: result = ( x * y ) / MathLib.gcd(x,y)

We can also improve the efficiency of isPrime by defining an activity for it:

static query isPrime(n: int): boolean
pre: true
post:

(n < 2 => result = false) &

(n = 2 => result = true) &
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(n > 2 =>
result =
Integer.subrange (2, n.sqgrt.floor)->forAll( i |
nmod i > 0 ))

activity:
if n < 2 then return false
else if n = 2 then return true else skip ;

b : int := n.sqgrt.floor ;

i : int := 2 ;

while 1 <= D

do
if n mod 1 = 0 then return false
else 1 := i+l ;

return true

An example of the second kind of library is the XMLParser component, which
enables a UML-RSDS application to extract data from XML format files. A Java
implementation is provided for this component.

Some existing UML-RSDS libraries include:

e Real, with operations subrange(low : double, step : double, upper : double) :
Sequence(double), minValue() : double, maxValue() : double

e MathLib, with random, factorial, combinatorial, gcd, lcm, pi, etc., as above.

e NormalDist, with operations normal, cumulative, sample.

e Matrix, with operations on (2-dimensional) matricies (Fig.5.4).
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Fig. 5.4 Matrix and sequence libraries



86 5 Financial System Specification Using UML

e Sequences, with operations on sequences (Fig.5.4).

e StatLib, with operations mean(Sequence(double)) : double, mode, etc.

e NumericOptLib, with operations for secant, bisection and other numerical opti-
misations.

e StringLib, with operations before(str : String, delim : String) : String, after
(str : String, delim : String) : String, split(str : String, delim : String) : Sequence
(String), etc.

e XML Parser, to parse XML documents.

These libraries are defined in realmm.txt, mathlibmm.txt, etc, at https://nms.kcl.
ac.uk/kevin.lano/libraries and in the umlrsds distribution.

5.5 Design Quality Flaws

Object-oriented code and models can have quality flaws, sometimes referred to as
‘bad smells’, which are poor-quality structures and organisation of the system that
can impair understanding and make the system difficult to change. Although these
are not functional errors, such flaws can lead to higher costs, especially in an agile
approach where the ability to change models or code is essential.

Examples of quality flaws include:

e God Class: one class carries out most of the system functionality, whilst others

are auxiliary to it.

Excessive Class Length; Excessive Method Length; Excessive Inheritance use.

Excessive Parameter List (e.g., more than 10 parameters in an operation).

Duplicate Code: sections of identical code in different locations.

Cyclomatic Complexity (a high number of logical conditions in an operation, rep-

resenting different possible execution paths).

Too Many Methods/Operations (e.g., more than 20 in a class).

e Too Many Fields/Attributes (e.g., more than 20 in a class).

e Excessive Fan-Out (more than 5 calls to different operations from one operation),
Excessive Fan-In (more than 5 different callers of one operation).

Code/design smells can make maintenance of the system more expensive, and
increase the likelihood of functional errors being introduced or remaining undetected.
For example, an excessively large class or operation is difficult to understand or
change, whilst an operation with high cyclomatic complexity is difficult to test.
Duplicate Code means that any change in one copy must also be duplicated to the
others. Refactoring can be used to remove these flaws and improve structure.

5.5.1 Technical Debt

Technical debt (TD) refers to the short and long-term impact of software quality
flaws [2]: The principal costof TDristincurred when refactoring or other redesign
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is used to remove the flaw from the software (analogously to paying off a debt by
paying back the principal of the loan). Alternatively, interest on the debt is paid in
additional costs due to the flaw, each time the software is maintained.

Technical debt is a problem both for manually-written code and automatically-
generated code [3]. We consider that this issue should be addressed during devel-
opment as part of the agile practice of regular refactoring. If TD is addressed and
reduced at the specification level, this should also result in reduced TD in gener-
ated code, provided that the code generators are constructed to avoid introducing
additional TD such as code duplication.

5.5.2 Measuring Technical Debt

Tools such as PMD (https://pmd.github.io) can be used to identify design flaws in
code. PMD identifies class and method size issues, cyclomatic complexity, etc. PMD
uses the following design flaw thresholds for code, based on lines-of-code (LOC)
(Table5.1).

Similar indicators are used in the SonarQube tool for the SQALE method [4],
which counts occurrences of code duplication and excessive method complexity.
Code duplication is an indicator of inadequate factoring and generalisation of func-
tionality within the code. A CC limit of 10 is also suggested for Java in the SQALE
method examples of [5], although with a lower EPL threshold of 5.

Such thresholds can also be adopted as indicators of quality flaws in UML spec-
ifications. Instead of LOC as a measure of class and operation size, a measure ¢ of
semantic complexity of expressions and activity pseudocode can be used. Tables 5.2
and 5.3 show how this is defined, together with a count of number of tokens, .

The UML-RSDS tools use c as a basis for identifying quality flaws and estimating
technical debt, with a threshold of ¢ = 100 for individual operations, and ¢ = 1000
for a complete specification. Duplicate expressions or activity code with ¢ > 10
tokens are also identified.

Table 5.1 Typical thresholds for code flaws

Code smell Threshold
Excessive class length (ECS) 1000 LOC
Excessive method/operation length (EOS) 100 LOC
Excessive parameter list (EPL) 10 parameters
Cyclomatic complexity (CC) 10

Too many operations/methods (ENO) 10 per class
Too many attributes/fields (ENA) 15 fields
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Table 5.2 OCL expression complexity measures

Expression e

Complexity c(e)

Token count #(e)

Numeric, boolean or
String value

0

1

Identifier iden
Basic expression obj.f

1
c(obj) +c(f) + 1

1
1(obj) +1(f) + 1

Operation call e(pl, ..., pn)

c(e) + 1+ Zic(pi)

t(e) + n+ 1+ Zit(pi)

Unary expression op e
e—op()

1+ c(e)

1 +1(e)
4+ 1(e)

Binary expression el op e2
el—op(e2)

clel) +c(e2) + 1

t(el) + t(e2) + 1
t(el) +1(e2) + 4

Ternary expression op(el, €2, €3)
if el then e2
else e3 endif

clel) +c(e2) +c(e3)+ 1

t(el) + t(e2) + t(e3) + 5
t(el) + 1(e2) + t(e3) + 4

letv:T=eline2

c(T) 4+ c(el) +c(e2) + 4

(T + t(el) + (e2) + 5

Setlel, ..., en}

Sequencelel, ..., en}

1+ Xic(ei)

2+ n+ Zit(ei)

Table 5.3 Activity complexity measures

Activity s Complexity c(s) Token count
returne 1+ c(e) 1+ 1(e)

vi=e c(v) +cle) +1 t(v) +t(e) +1

sl; s2 c(sl) +c(s2) + 1 t(sl) +t(s2) + 1
Operation call e(pl, ...,pn) | c(e) + 1+ Zic(pi) tle) +n+ 1+ Xit(pi)
if e thensl else s2 1+ c(e) + c(sl) + c(s2) 3+ t(e) +t(sl) + 1t(s2)
forv:edos cle)+c(s)+1 3+ t(e) +t(v) +t(s)
whileedos cle) +c(s)+1 tle) +t(s) +2
break 1 1

continue 1 1

varv:T c(T)+3 t(T)+3

5.5.3 Refactoring of Code and Models

Refactoring is the process of modifying code or models to improve structure, whilst
keeping the same semantics. For example, in order to remove flaws and reduce

technical debt:

e Large methods/operations can be factored into smaller parts.
e Duplicated code can be factored into a new operation, which is called from the
locations of the copies.

an be bundled into a single object parameter.
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A schematic example of factoring out duplicated activity code could be as follows.
The original code could be:

ml ()
activity:
. ml-specific code ...
. duplicated code sl; s2; s3;

m2 ()
activity:
. m2-specific code ...
. duplicated code sl; s2; s3;

The refactored code could be:

mnew ()
activity:
. duplicated code sl; s2; s3;

ml ()
activity:
. ml-specific code ...
mnew ()

m2 ()
activity:
. m2-specific code ...
mnew ()

This refactoring reduces the size of the operations, and removes duplicated code.
However it increases the number of operations and may increase the number of calls
to operations.

Parameter bundling forms a single object to represent a group of related param-
eters, thus removing an EPL flaw.

The original activity code could have the form:

m(x : X, y : ¥, pl : T1,..., pn : Tn)
activity:
. m’s code ...

Assume that pl...pn are related data, e.g., different attributes of a Person.
Define (or use) a class PClass that groups these items together:

class PClass
{ attribute pl : T1;

attribute pn : Tn;
}

The refactored code is then:
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m(x : X, y : Y, p: PClass)
activity:
. m’'s code, access to pi is now p.pi ...

This reduces the number of parameters, and groups related data into a class.

5.6 Design Patterns

Design patterns are structures of software which define solutions to particular design
problems. Patterns are mainly independent of specific programming languages,
although they are aligned more to object-oriented languages. They can also be used
for UML.

There are three main categories of design patterns:

Creational:  these organise the creation of objects and of object structures. E.g.:
Singleton, Factory

Behavioural: these organise the execution of behaviour amongst objects. E.g.:
Iterator, Observer, Strategy

Structural:  these organise the structure of classes and relationships. E.g.: Proxy,
Facade.

5.6.1 Singleton Pattern

This is a creational pattern used to define classes which should have only a single
instance (for example, a single point of access to a resource such as shared repository).
Singleton is used when there must be a unique instance of a given class, accessible
to clients from a well-known access point.
The involved classes are:

e Singleton—defines an operation instance thatlets clients access its unique instance.
instance is a class-scope (static) operation.
e Singleton may also be responsible for creating its own unique instance.

A typical schematic structure of a singleton class, in Java, is:

public class Resource
{ private static Resource uniquelInstance = null;

private Resource() { }

public static Resource getResource()

{ if (uniqueInstance == null)
{ uniqueInstance = new Resource(); }
return uniquelnstance;
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}

public boolean request (Data d)
{ ...}
}

Because the constructor is private, only the Resource class itself can construct
Resource instances: this is only done once, when gefResource is called for the first
time.

A client uses the singleton via calls

Resource.getResource () .request (x) ;

5.6.2 Observer Pattern

Observer is a behavioural pattern for the management of multiple dependent objects
whose state may need to change as a result of changes to a resource that they depend
upon. The dependent objects are termed observers or views of the resource, which
is termed the observable or subject.

Observer is a means by which logical invariants which span different objects can
be maintained (Fig.5.5).

ObserverA
observerAState = fA(subjectState) N
observerAState
Subject
subjectState
1
. ObserverB
al observerBState

observerBState = fB(subjectState) "

Fig. 5.5 Abstract observer pattern
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Subject Observer
observers =
attach(Observer) update()
detach(Observer)
notify()
[\
- for all o in observers
| do
o.update()
ConcreteObserver
subject observerState
ConcreteSubject update()
subjectState: T
getState(): T -~ | return subjectState "
setState(val: T) .
' observerState =
subjectState = val; subject.getState()

notify();

Fig. 5.6 Design structure of observer pattern

In order to achieve this, the subject object must notify all its dependents when its
data is changed (Fig.5.6). The dependents then individually take necessary actions
to update their own state.

The participants in the pattern are:

e Subject class—the abstract superclass of classes containing observed data. It has
methods attach and detach to add/remove observers, and notify to inform observers
that a state change occurred on the observable, so they may need to update their
data.

e ConcreteSubject—defines specific observables, any method of this class which
modifies the subject data may need to call notify on completion.

e Observer—abstract superclass of observers of subjects. It declares the update
method to adjust the observer’s data on any subject state change.

e ConcreteObserver—defines a specific class of dependent objects.

An example of Observer could be the maintenance of logs of account transac-
tions in the bank account system (Fig.4.6). In general, a bank needs to retain a log
of all transactions on customer accounts. Define a Logger class to store a sequence
of transaction records, each transaction has an accountld and the action performed
(withdraw, deposit, etc) on that account. Logger is an Observer for Account (play-
ing the role of a Subject). The account notify operation is invoked by deposit and
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W
Account

ACco] . o €1l

name: § = !

balance: double = 0

overdraftLimit: double = 0

kind: AccountKind = current
oo)

withdraw(...)
deposit(...

Transaction

accoun ==

action: String = """

Fig. 5.7 Observer pattern for account logging

withdraw, and sends transaction data to all attached Logger objects, via update
invocations on these. Each logger responds to update(ald, data) by creating a new
Transaction and storing this in its log sequence (Fig.5.7).

The Account updater operations call notify:

Account::

deposit(amt : double)

pre: amt >= 0

post:
balance = balance@pre + amt &
notify("deposit " + amt)

Account::

withdraw(amt : double)

pre: balance - amt >= -overdraftLimit
post:

balance = balance@pre - amt &
notify("withdraw " + amt)

notify sends the updated data to loggers:

Account: :
notify(s : String)
post:
loggers->forall( lg | lg.update (accountId, s) )

These then create a new transaction and add it to their log sequence:

Logger: :
update(id : String, s : String)
post:
Transaction->exists( t | t.accountId = id &

t.action = s & t : transactions

Several different loggers could be attached to each account, e.g., for customer services
poses as well as for regulatory record-keeping or fraud detection purposes.
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5.6.3 Iterator Pattern

This behavioural pattern addresses the common situation of iteration through some
collection of elements, processing each in turn. Collections can be linear, such as
sequences and arrays, acyclic such as trees, or more general graphs or networks.

The pattern separates the iteration process into a Iterator object, which at a min-
imum supports operations to initiate the iteration (e.g., start()), to step one position
forward (e.g., next()), to obtain the element at the current position (e.g., element()),
and to test if the end of the iteration has been reached (atEnd()). Such a basic iterator
is termed a ForwardlIterator, other kinds of iterator are:

e Bidirectional iterators, supporting additional previous() and atStart() operations.
e Random access iterators, supporting access to positions via an index, these iterators
provide operations such as get(i : int).

The general iteration algorithm for a forward iterator it is:

it.start() ;
while not (it.atEnd())
do
( ... process it.element ()
it.next ()

)

An unusual but useful application of iterators is to iterate over collections which
are too large to hold in memory at once. The iterator instead generates new elements
of the collections as needed. For example, all permutations of a large collection (for
a collection of size n, the number of permutations is n!), or all subsets (2" subsets for
a collection of size n). Figure 5.8 shows examples of such iterators.

The definitions of next for Permutationlterator and Subsetlterator are based on
the increment operation for a lexicographic ordering. For example, for an alphabet a,
b, c, the least element of the ordering is the empty string “”, then successive elements
are “a”, “b”, “c”, “aa”, “ab”, etc. The permutations of the alphabet sequence are all
the words with the same length as the alphabet and containing no duplicates. The first
permutation is alphabet, whilst next for a permutation iterator starts at the current
permutation word and successively applies increment until the next permutation is
obtained. The last permutation is alphabet.reverse.

The Permutationlterator can be used as follows in Java:

public static void main(String[] args)

{ PermutationIterator p = new PermutationIterator();
Vector v = new Vector();
v.add("a"); v.add("b"); v.add("c");
p.setbasesqg(v) ;
p.init();
p.start () ;
List w = p.element () ;
System.out.println(p.element()) ;

while (! p.atEnd() )
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Fig. 5.8 Iterators for large collections

{ p.next();
System.out.println(p.element()) ;
}
}

5.6.4 Proxy Pattern

This pattern addresses the situation where an application needs to communicate with
remote objects (e.g., on another computer). The idea of the pattern is to define a local
proxy for the remote object, which is more convenient for the application to use.
The knowledge of how to invoke the remote object is then separated from the main
application out into the proxy: the proxy acts as an intermediary interface or facade
for the remote object (Fig.5.9).

For example, a trading application could be organised in this manner, with a FIX
(Financial information exchange) protocol engine being used as a proxy for a remote
exchange (Chap. 6).

The application requests services from the proxy object, e.g., to buy a quantity
of a share. The proxy handles the details of how the request is implemented, e.g.,
by constructing a FIX message and communicating with an exchange to make the
purchase, using the FIX protocol.
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<<interface>>

Client Subject

RealObject
Proxy realObject !

Fig. 5.9 Structure of proxy pattern

5.7 Software Architectures

The large-scale design of a software application involves the determination of which
software components are needed, and the organisation of the component interactions
in order to achieve specified system requirements.

Components should be:

e Subsystems and modules with a coherent and well-defined purpose, satisfying
functional cohesion.
e A group of closely related classes, or a single class.

Modules are highly-cohesive components which carry out a specific set of func-
tions. For example, managing account creation, deletion and customer-account
dependencies in a bank. A separate module may be concerned with managing account
transactions, since these functionalities are relatively independent of each other.

Subsystems are groups of modules and may be organised on the basis of a general
role within the application. For example, a UI or client subsystem is concerned with
receiving information from and presenting information to users, whilst a functional
core or business functions subsystem contains the modules which define the core
business logic of the application. A data repository or resource subsystem contains
modules which manage data or links to external resources. Such subsystems are
usually referred to as ‘tiers’ since they are organised as a stack of layers or tiers, with
communication only between adjacent layers.

A number of possible architectures can be appropriate for financial applications:
client-server (2 tier, with the business and resource tiers combined), client-business-
resource (3-tier), or more complex architectures such as an enterprise information
systems (EIS) architecture involving additional intermediate tiers between the client,
business and resource tiers.

We will describe architectures using architecture diagrams, which represent com-
ponents (subsystems or modules) as rectangles, with nesting used to indicate pack-
aging of components within others. An arrow from component X to component Y
means that X depends on Y: it invokes operations of Y, or it refers to data of Y. X
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Fig. 5.10 General 3-tier application architecture
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Fig. 5.11 Banking system architecture

is termed a client of Y, and Y is a supplier of X. The arrow can have a stereotype
<« readOnly > to indicate that the client does not modify any of the supplier data.
The operations of a module (the services it offers to clients) can be listed in the
module rectangle. Figure 5.10 shows a typical 3-tier application architecture in this
notation.
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Within the functional core/business tier there can be a further subdivision of
components in which certain components are functionally-oriented and define a set
of functions which the business tier provides as services to the higher tier. The
functions may coincide with the use cases of the application or with special cases of
them. Other components are data-oriented and represent the key business entities. The
functional components (also termed session beans) co-ordinate the functionalities
provided by the data components (or entity beans) to carry out their own operations.
Business data in the entity beans is persisted by storing it in data resources via the data
repository/resource tier. A further example of this architecture is shown in Fig.5.11.

5.8 QuantLib

QuantLib is an open source C++ library for quantitative finance
(www.quantlib.org). It was launched in 2000 and has become widely used in the
finance domain. Although companies may have misgivings about using code over
which they have no control, open source libraries have advantages over proprietary
code (such as Excel) because users can see precisely what computations are being
performed. The widespread uptake and usage of libraries can increase their reliability
(as for example, with the programming language libraries for C, C++, Java, etc).
QuantLib modules include:

Numeric types: synonyms such as Real, Time, Rate for double.

Currencies, FX rates: including predefined national currencies and functions for
the management of exchange rates.

Design patterns: templates for Factory, Singleton, Observer, etc.

Date and time: dates, calendars, day counts and date calculations.

Math tools: random number generators, root finders, optimisation algorithms.
Monte Carlo: a framework for Monte Carlo simulations.

Cash flows: classes and functions for cash flows and cash flow sequences.
Term structures: a framework for defining yield curves/term structures.
Financial instruments: including a wide range of different contract models.
Pricing engines: pricing algorithms for many kinds of financial instrument.
Volatility models.

Stochastic processes.

QuantLib therefore forms a natural basis for a DSL for quantitative finance, and in
this book we have endeavoured to define our models in a form that is consistent with
QuantLib.

5.8.1 Design Patterns in QuantLib

QuantLib uses the following design patterns:

o_Factory: a class. which produces.instances of other classes. A specific example is
a factory that creates different varieties of financial instruments.
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e Singleton: used for repositories of data that are used in several places in the code.
E.g., a repository holding market data points for interest rates, or a repository of
exchange rates between currencies.

Repository :: instance() returns the instance of singleton class Repository.

e Observer is used in any situation where some objects may need to be notified when
another object changes state.

For example, a bond valuation object that depends upon a yield curve: the valuation
must be recalculated if the yield curve changes. Therefore the valuation object must
be an observer for the yield curve object.

The QuantLib Quote class is both an Observable (a Subject), and an Observer (a
View).

Summary

In this chapter we have considered software design approaches for financial systems,
using UML and agile MBD. We have described reuse techniques, design patterns,
and given an overview of the QuantLib finance library.

Exercises

1. Specify a library function coprime(x : int,y : int) : boolean which returns true
if x and y are positive integers which are co-prime (they have no common divisor
except 1). E.g., 21 and 25 are co-prime. Define both a postcondition and an activity
for the operation.

2. Use the bootstrap procedure to find 4 year term and 5 year term interest rates, if
(1) the known 1, 2 and 3 year term rates are 1.5, 1.8, 1.7%, (ii) there is a 4-year 2%
annual coupon bond with price 103 and (iii) a 5-year 2% annual coupon bond with
price 105. All of these bonds are from the same issuer and settlement date.

3. Define an update() operation for an Investment (Fig.5.2) considered as an observer
of a YieldCurve object which has a query operation yield(t : double) : double to
return the yield for a given maturity ¢.

4. Examine the FX code in QuantLib and define a corresponding class diagram of
the concepts and main operations involved in representing and processing FX.
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Chapter 6 ®)
Trading and Analytics Technologies oo

In this chapter we describe technologies to support financial trading and data analysis.

e Trading technologies: the FIX protocol and FIXML
e Data analytics technologies: NoSQL databases, HBase, Map/Reduce, Tensorflow
e Case studies of data analysis: share volatility and technical analysis.

6.1 Trading Technologies: FIX and FIXML

FIX is the Financial Information eXchange protocol, an open and de-facto standard
for financial information exchange, e.g., to make a trade. FIX defines a message
format and a communication model by which the parties to a financial transaction
can send and receive messages. It is platform independent, the messages are plain
text and can be generated and processed by programs in any programming language.
FIX originated in the mid 90’s from the need to standardise electronic trading and
order management formats.

The main uses of FIX are to support electronic trading, involving exchanges,
brokers and other market participants; share and fixed income trading, and streaming
multicast of financial data via FAST (FIX Adapted for STreaming).

The basic text format of a message is a sequence of field=value bindings,
separated by a delimiter character (ASCII code 1, the SOH character). The fields are
integers. Numbers from 0 to 4999 have predefined meanings, numbers from 5000 to
9999 are available for application-specific extensions. A header segment identifies
the FIX version (field 8), the message body size (field 9), message sequence number
within a session (field 34), the message type (field 35), etc. The body segment contains
data of the specific transaction, such as an account identifier (field 1), price (field
44), etc. Finally a message trailer contains a checksum (field 10).
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Fig. 6.1 XML metamodel 0.1
XMLNode
tag: String
attributes| *
0. * | subnodes XMLAttribute

name: String
value: String

Messages can be administration messages, such as session establishment and
termination messages, resend requests, etc., or messages enacting financial process
steps, such as an order creation, position report, etc.

6.1.1 XML

XML is a structured text format used as the basis for HTML and many other descrip-
tion and interchange representations. An XML document is a nested tree structure of
nodes with attributes and subnodes. Sometimes XML files are written by hand (e.g.,
small web pages or configuration files). More often they are generated by software.
For example, XML is used for messages and service definitions in the SOAP web
service framework.

Figure 6.1 shows a simplified version of the XML metamodel.

XML nodes are named by a tag identifying what the node represents:

<tagl .... />

This is a node with no subnodes.
Nodes can have attributes, with values:

<tagl attl="vall" att2="val2" />

Nodes may be nested to any depth:

<tagl .... >
<tag2 ... />
<tag3 ... />

</tagl>

In this case simple nodes with tags fag2 and rag3 are nested in a composite node
with ragl.
As an example, the XML data

<car make="XJ6" colour="silver" manufacturer="Jaguar">
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<engine capacity="31" />
<DVLARecord status="OffRoad" date="20120101"/>
</car>

represents a particular car.

6.1.2 FIXML

FIX messages can be expressed either in the basic character format or in an XML
format, called FIXML. The FIXML format is defined at http://fixwiki.org/fixwiki/,
and http://www fixtrading.org. FIXML files are produced and consumed by software,
e.g., trading applications.

An example of a FIXML file is a simple order message:

<?xml version="1.0" encoding="ASCII"?>
<FIXML>
<Order ClOrdID="123456" Side="2"
TransactTm="2001-11-17T09:30:47-05:00" OrdTyp="2"
Px="93.25" Acct="26522154">
<Hdr Snt="2001-11-17T09:30:47-05:00"
PosDup="N" PosRsnd="N" SegNum="521">
<Sndr ID="AFUNDMGR"/>
<Tgt ID="ABROKER"/>
</Hdr>
<Instrmt Sym="IBM" ID="459200101" IDSrc="1"/>
<OrdQty Qty="1000"/>
</Order>
</FIXML>

The first line indicates the version of XML that is being used. The FIXML tag
identifies that the data is FIXML format. The file content defines an Order with
nested header Hdr, instrument Instrmt and OrdQty subnodes. The header has nested
sender and target subnodes. The names of FIX fields are used instead of numbers in

the basic text format. Thus Acct is used instead of the number 1 to mark the account.
A more complex example is a Position Report message:

<?xml version="1.0" encoding="ASCII"?>
<FIXML>
<PosRpt RptID="541386431" Rslt="0"

BizDt="2003-09-10T00:00:00" Acct="1" AcctTyp="1"

SetPx="0.00" SetPxTyp="1" PriSetPx="0.00" ReqTyp="0" Ccy="USD">
<Hdr Snt="2001-12-17T09:30:47-05:00" PosDup="N" PosRsnd="N" SegNum="1002">
<Sndr ID="String" Sub="String" Loc="String"/>
<Tgt ID="String" Sub="String" Loc="String"/>
<OnBhlfOf ID="String" Sub="String" Loc="String"/>
<DlvrTo ID="String" Sub="String" Loc="String"/>
</Hdr>
<Pty ID="OCC" R="21"/>
<Pty ID="99999" R="4"/>
<Pty ID="C" R="38">
<Sub ID="ZZzZ" Typ="2"/>
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</Pty>

<Qty Typ="SOD" Long="35" Short="0"/>

<Qty Typ="FIN" Long="20" Short="10"/>

<Qty Typ="IAS" Long="10"/>

<Amt Typ="FMTM" Amt="0.00"/>

<Instrmt Sym="AOL" ID="KW" IDSrc="J" CFI="OCASPS" MMY="20031122"
Mat="2003-11-22T00:00:00" Strk="47.50" StrkCcy="USD" Mult="100"/>
</PosRpt>

</FIXML>

In this case there are multiple subnodes with the same tag (Pty and Qty) for different
contracts within the position.
Other sample FIXML messages can be found at http://fixwiki.org/fixwiki/.

6.1.3 FIX Engines

A FIX engine is a software component which creates and processes FIX messages,
either in the basic text format or in FIXML or in both. It can be called from an
application via an API in order to carry out trading commands via the FIX protocol.
There are FIX engines for many different platforms and programming environments.
It is also possible (but time-consuming) to implement your own engine.

FIX engines act as endpoints of a FIX communication channel between finan-
cial applications (Fig.6.2). They manage the administration of the communication
and enforce the communication protocol including timeouts and error detection and
recovery.

A communication session is initiated by the client via a logon message to the
server. The server receives the request, and after validation, establishes the connec-
tion. The client can end a session by sending a logout message. Individual messages
in a session are identified by a sequence number (SeqgNum field in the above exam-
ples). This permits detection of messages which arrive out of order, lost or invalid

FIX connection
FIX Engine over network o FIX Engine
#
Trading System Order
Management
System
Customer (client) Supplier (server)
application application

Fig. 6.2 Role of FIX engines
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messages, etc. A special kind of message (heartbeat messages) are sent in both direc-
tions at regular intervals in order to maintain the connection. The session may be
closed if no message of any kind is received for 2 times the heartbeat interval.

6.2 Data Analytics Technologies

The representation and processing of ‘big data’ requires new database and analy-
sis technologies, in particular alternatives to relational databases, such as column-
oriented databases, and distributed large-scale parallel processing models such as
Map/Reduce.

6.2.1 Data Storage

Relational databases have been the mainstream database technology since the 1970s.
They satisfy the standard properties of supporting CRUD operations (Create, Read,
Update, Delete), and their transactions have the ACID (Atomicity, Consistency, Iso-
lation, Durability) properties. Relational databases use normalised tables to reduce
data redundancy, and the SQL query language is used to update and search data.

While relational databases have been very successful for many tasks, they have
limitations for storage of very large (gigabyte and upwards) data sets and efficient
processing of these. Thus various forms of NoSQL databases have been devised.
These also support CRUD operations but relax some ACID properties. Data may not
be normalised, which may improve efficiency but results in data duplication, taking
advantage of the declining costs of data storage. Instead of SQL, NoSQL databases
use specialised APIs to read and update data.

Some example NoSQL data storage technologies are Bigtable and HBase. These
use column-oriented data models for efficient storage of big data. Bigtable was devel-
oped at Google for applications such as web indexing, Google Earth, Google Finance,
etc.

The range of NoSQL data models include:

e Key-value stores such as Oracle Coherence

e Column-oriented databases such as Bigtable and HBase
e Document databases such as MongoDB

e Text-search datastores such as Apache Lucene

In the column-oriented data model, a data store consists of a set of tables, and the
table rows have the structure

row key, column family 1, ..., column family n



106 6 Trading and Analytics Technologies

where row key is a string, unique for each row, and each column family
consists of one or more related columns of data cells. The rows are stored in lexico-
graphical order of the keys,' and each cell can store multiple versions of data, each
version is timestamped.

An example of this form of data storage is the Bigtable store for Google Analytics,
which records website statistics (visits per day to different websites, details of each
visit, etc). A table records session data, the row keys of the session table are of the
form:

website name + date/time of session start

Thus all session data for visits to one website are stored contiguously, and the records
are stored in chronological order.

The Apache HBase database (hbase.apache.org) is a column-oriented, key-value
database. Each data item in a table is addressed by a row key, a column family, and
column name as for Bigtable. There can be multiple timestamped versions of items.
Rows are stored in lexicographic order of row key. The choice of key structure is
important to ensure efficiency. Generally we should choose the key so that (i) data
likely to be frequently accessed together are close in the table; (ii) data accesses are
otherwise distributed across a wide range of the table, to avoid overloading one node
in the distributed data store. Physically, large tables can be split into disjoint blocks
of rows, stored on separate computers.

An HBase example for finance is share data analysis. Data on share trading on par-
ticular exchanges can be obtained from sites such as AlphaVantage (alphavantage.co)
or IEX Trading (https://iextrading.com) with a format such as

Symb, date, opening price, high, low, closing price, volume

where Symb is an alphanumeric company symbol, e.g., “IBM”. opening and closing
prices are the prices at the start and end of the trading day date, and volume is the trad-
ing volume of shares of Symb on date. high and low are the maximum and minimum
prices reached by Symb on date. date typically has a format such as day/month/year
(2 digits for the day, followed by 2 for month then 4 for year).

If we want to ensure that all data for one symbol is stored together, in chronological
order, we need to define the keys as:

Symb:year:month:day
This means that the rows (e.g., for IBM) are in the following order:

IBM:2017:12:28 ....
IBM:2017:12:29 ....
IBM:2018:01:02 ....

| Recall that “a02 < “al”” inlexicographic,order,and “aa” < “ab”, etc.
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This ordering ensures that data for the same share for successive trading days are
always stored in successive rows. If we had instead used the day/month/year format,
data for the same day in different months and years would be stored contiguously.

Our key makes sense if accesses to nearby dates of one symbol frequently occur
within one operation (e.g., to examine price trends for the symbol over a time period).
The same dates for different shares are distributed across the table.

The column organisation can consist of a column family prices with four columns
opening, closing, high, low, and a column family volume with one column.

There are APIs for HBase in different languages. The Java API uses the following
commands to create a table and add a column family (table, row key and column
names are byte arrays):

HTableDescriptor table = new HTableDescriptor (
TableName.valueOf ("ShareTable" .getBytes())) ;
table.addFamily (new HColumnDescriptor ("prices".getBytes()));

To insert a row with key &, column family ¢f and columns c1, c2, use:

Put p = new Put(k);

p.addColumn (cf,cl,datal) ;
p.addColumn (cf,c2,data2) ;
table.put(p); // or a list of Put’s

The get method obtains single rows or cells:

Get g = new Get (k) ;
g.addColumn (cf,cl);
Result r = table.get(9g);
if (r.isEmpty())
{ System.err.println/(
"No data for row " + k + " cell " + cf + ":" + cl); }
else
{ System.out.println("" + r.value()); }

The scan command obtains sets of rows. To scan rn rows starting from k we can
write:

Scan scan = new Scan();

scan.setStartRow (k) ;

scan.setCaching(rn) ;

ResultScanner results = table.getScanner (scan) ;
for (Result r : results)

{ // do something with r

}

It is also possible to filter results in the scan.
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6.2.2 Map/Reduce

Map/Reduce is a framework for the distributed processing of large datasets. The
process partitions the source dataset into blocks, which are separately processed by
the map function, possibly on separate computers. The result sets are combined via
the reduce function to produce an overall result. This approach is suitable for anal-
ysis of large static datasets (not streams). Map/Reduce implementations incorporate
reliability via distribution and the reassignment of work from failed processors.

A Map/Reduce platform provides:

e Input data partitioning and assignment of partitions for map processors
e Partitioning and shuffling of map output to the reduce processors
e Crash recovery.

Figure 6.3 shows the general structure of Map/Reduce processing.
For a particular analysis task, a developer writes appropriate map and reduce
functions of the following forms:

e map : KeyT1 x ValueT1 — Sequence(KeyT?2 x ValueT?2)
map takes pairs (k1, v1) and produces lists of (k2, v2) pairs.
e reduce : KeyT2 x Sequence(ValueT2) — Sequence(ValueT 3)
reduce takes a (k2, [wl, ..., wm]) pair and produces lists [ul, ..., up].

The shuffle step combines map results: (k, v) and (k, u) are combined to (k, [v, u]),
etc.

reduce can be performed in stages, if it is associative, i.e., the result of several
reduce nodes can be fed into a further reduce.

As an example, consider the task of counting occurrences of different company
symbols in a large collection of FIXML Order message files m.

e map(m.name, m.data) is defined to produce [(s, 1)] if m.data is an Order and
Sym = s occurs in m.data, otherwise it produces the empty sequence []

o Shuffle directs aggregated data (s, sq) for a given s to a reduce node for s

e reduce(s, counts) produces [(s, X counts)].
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The aggregated final result is a list of symbols with their counts.
In this case reduce is associative: different count sums for the same s could be fed
into a further reduce.
General queries can be implemented using Map/Reduce, for example an OCL
expression
data— select(x | P)—collect(e)—r()

with r associative can be implemented as follows:

Split data into partitions based on some key1 of its elements
map produces e-sequences from the x satisfying P

Results are allocated to reduce based on a key?2 of the e-values
reduce applies r.

6.2.3 Apache Hadoop

This is an open-source framework for distributed storage and processing of Big data
sets (hadoop.apache.org). It consists of:

e The Hadoop distributed file system (HDFS)
e Hadoop MapReduce implements Map/Reduce using HDFS.

Hadoop also supports HBase and other packages.

6.2.4 TensorFlow

TensorFlow is an open-source platform for machine learning, it supports the construc-
tion of neural networks for learning data classification rules (https://www.tensorflow.
org). TensorFlow processes data as multi-dimensional arrays/matrices, termed fen-
sors. A training phase builds the classifier using existing data with known classifi-
cations. An example application of Tensorflow could be to learn trading strategies
based on historical share data and trading indicators.

6.3 Case Study: Share Price Volatility

The volatility of a share or other financial asset is a measure of how variable its price
or value is over a period of time. This can be used to assess the risk of investing in the
asset (the higher the volatility the greater the risk of losses) and it is also important
in computing the value of a derivative security based on the asset. The volatility is
conventionally denoted by o, and represents the standard deviation of the change
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Fig. 6.4 Share model

in the asset price over a period of time, usually one year. More precisely, o is the
standard deviation of the continuously compounded return of the asset over one year.

One way to estimate o for a particular share, e.g., for IBM, is to sample closing
prices closing;, i = 1 to n, of the share over a relevant period (e.g., the previous 90
trading days), compute the proportional changes in price x; = closing;/closing;_,
for i = 2 to n, and compute the standard deviation s of the log(x;). The volatility is
then s//T where T is the length of the sampled time period in years.

We can express this procedure in terms of the share model of Fig.6.4, where
daydata holds a sequence of the daily price and volume information for the share,
assumed to contain sufficient information for analysis. Physically, this could be stored
in an HBase table.

As a financial procedure, the following steps are required:

1. Get the closing prices for the last 90 trading days (assuming daydata.size > 90):
days90 = daydata.subrange(daydata.size — 89, daydata.size)

for an auxiliary sequence variable days90.
2. Compute the daily returns:

dayreturn[i — 1] = (days90[i].closing /days90[i — 1].closing)—log()

for i =2 to 90.

e returns, using a library function:
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s = StatLib.standardDeviation(dayreturn)

4. Set the volatility of the share to be s/(300.0/90.0)— sgrt(), assuming a 300 day
trading year.

volatility = StatLib.standardDeviation(dayreturn)/(10.0/3.0)—sqrt()

In formal OCL notation, these steps become the postconditions of a use case
computeVolatility:

Share ::
days90 = daydata.subrange(daydata.size — 89, daydata.size) =
Integer .subrange(2, 90)— forAll(i |
(days90[i].closing /days90[i — 1].closing)—log() : dayreturn)
Share ::
volatility = StatLib.standardDeviation(dayreturn)/(10.0/3.0)—sqrt()

6.4 Case Study: Technical Analysis of Share Prices

Technical analysis involves the analysis of share price data over past periods, with
the aim of detecting trends and predicting future price movements, in order to guide
investment decisions. For example, if there has been a consistent downward trend in
a share price, it is useful to be able to recognise a point where the trend ceases and
could reverse: this could be a opportunity to invest in the share, or at least to cease
selling it. Conversely if a trend of price increases is coming to an end, this would
be an opportunity to sell the share. Software support is critical to technical analysis,
and this involves the computation of different technical indicators such as various
forms of moving averages of share prices over an interval of time, these indicators
can either be for the direct use of a technical analyst, or they can be used as input to
machine learning algorithms such as neural nets.

The basis of several technical indicators is the concept of a moving average:
a computation of the average price of a share over a preceding period (e.g., the
previous 26 trading days). As time passes, the oldest price in the series is replaced
by the newest, and the average is recalculated.

Given the model of Fig. 6.4, a 26-day average of closing prices is:

SMA(26)(n) = (XL, _,sdaydatali].closing) /26

Recall that sequences are indexed starting from 1.
In OCL, the definition is:
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Fig. 6.5 Daily price and SMA graph for a share

SMA(26)(n) =
(daydata.subrange(n — 25, n)— collect(closing)— sum()) /26

for any n from 26 up to daydata.size.
The 26-day moving average sequence sma can be maintained together with
daydata:

Share::
adddata (d : ShareDayData)
pre: daydata.size > 25 & sma.size > 0
post:
n = daydata@pre.size &
smad = sma@pre.last + d.closing/26 -
daydata@pre[n-25].closing/26 &
daydata->includes(d) &
sma->includes (smad)

Figure 6.5 shows a graph of daily share price data (upper line) and the correspond-
ing SMA(26) line. The SMA line smoothes out the variations in the daily line. Points
where the daily line crosses from below the average line to above it are potential
indicators to buy the share.

A simple average has defects, in particular, older information is treated equally to
recent information. An alternative is an exponential moving average (EMA), which
weights more recent information more strongly than older data:

EMA(26)(n) = X1, _,sdaydatali].closing s o % (1 — o)D)
That is:

EMA26)(n) = Integer.Sum(n — 25, n, i,
daydatali].closing x o % (1 — a)—>pow(n — i)))
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Fig. 6.6 Daily price and EMA graph for a share

where n > 26 and n < daydata.size, for a 26-day exponential moving average with
decay factor «. A larger decay factor weights more recent data more heavily. A
common choice of « is NL-H where N is the term of the EMA. For N = 26, « = 0.074
approximately.

Again, the EMA can be maintained together with the daily data:

Share::

adddata (d : ShareDayData)

pre: true

post:
emalast = (if ema.size > 0 then ema.last else 100 endif) &
emad = emalast + alpha*(d.closing - emalast) &
daydata->includes (d) &
ema->includes (emad)

Figure 6.6 shows a graph of daily share price data and the corresponding EMA(26)
line. Again, points where the daily line crosses from below the average line to above
it are potential indicators to buy the share.

From the EMA, further indicators can be derived. A popular indicator is the moving
average convergence/divergence (MACD). The MACD is the difference between a
short-term EMA, e.g., for 12days, and a longer-term EMA, e.g., for 26 days:

MACD(12,26)(n) = EMA(12)(n) — EMA(26)(n)

The short-term EMA reflects recent share price behaviour more strongly than does
the long-term EMA, so at points when EMA(12) becomes greater than EMA(26),
i.e., the short-term graph crosses the long-term from below, there is evidence of an
increasing price trend (or ‘bullish’ sentiment in the market towards the share). This
corresponds to the MACD crossing the zero line from negative to positive values.
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Conversely if the MACD crosses the zero line from positive to negative, this can
indicate a decreasing price trend and ‘bearish’ sentiment in the market.
An EMA of the MACD is additionally computed, typically on a 9-day basis:

MACDAVG(n) = (EMA(9)(MACD(12,26)))(n)

Finally, the divergence or difference between MACD and MACDAVG is also com-
puted.

A ‘signal-line crossover’ is a situation when MACD and MACDAVG cross over.
This is taken as a buy signal if the MACD becomes greater than the MACDAVG,
and as a sell signal if the reverse happens.

Summary

In this chapter we have reviewed some important underlying technologies for finance:
the FIX protocol enables transfer of financial data and service requests in a standard-
ised format, either a basic text format or structured XML (FIXML). Data analytics
technologies such as NoSQL databases and Map/Reduce enable large scale storage
and analysis of financial data.

Exercises

1. Daily share price data is often provided in the form
symbol,date, opening, high, low, closing, volume

where symbol is the stock symbol such as “IBM”, opening, closing, high and low are
the prices for symbol on date, and volume is the amount of trades in symbol on date.
For example:

"IBM", 28/12/2017, 66.32, 66.35, 67.12, 66.25, 9895653
"IBM", 29/12/2017, 66.42, 65.95, 66.92, 65.55, 9011653
"MSFT", 27/12/2017, 85.65, 85.98, 85.215, 85.71, 14662085

Define map/reduce processing to obtain (i) for each symbol, a count of the number
of dates on which volume > 300000 and closing > opening + 1; (ii) for each symbol,
the dates and difference closing — opening for which closing — opening is at its
maximum value.

2. For the above share database, describe how Map/Reduce can be used to find, for
each share symbol, the date(s) with the highest closing prices for the symbol, for
dates with volume at least 100000.
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3. Modify the adddata operations above so that they return true if the daydata graph
crosses up over the SMA or EMA graphs at the point of the new data, and false
otherwise.

4. In the graph of Fig.6.5, how good a predictor of increased share prices is the
‘price crossing SMA line upwards’ indicator? How many times after such an event
is the price higher 5 days after the event compared to the price at the event? For what
percentage of the events is this true?

5. What specific OCL functions r can be used in expressions

data— select(x | P)—collect(e)—r()

computable using Map/Reduce?
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Software Modernisation Guca i
and Re-Engineering

In this chapter we consider the use of UML and MBD for software modernisation
and re-engineering of applications. We consider two case studies:

e Matlab to C# migration case study
e Yield curve estimation

7.1 Software Modernisation

There is a substantial demand in industry for the modernisation of existing applica-
tions, including: (i) updating applications to support new modes of interaction such
as web services or cloud-based provision; (ii) migrating legacy applications from
outdated/unsupported technologies to modern technologies; (iii) transforming appli-
cations to meet the requirements of new regulations; (iv) re-architecting applications
to improve their fit to a business process.

Anexample of (ii) is the analysis of a 100 million LOC banking systemin COBOL,
and the re-engineering of this to 3 million LOC C# [1]. An example of (iv) is the
modernisation of a financial data management process described in [2].

Reverse-engineering is the process of extracting information from an existing
application in order to obtain a specification and other documentation that describe
its functionality and other properties. Re-engineering involves reverse-engineering
to obtain a specification that can be used as the basis of a specification for a mod-
ernised version of the application. Migration of the specification may be carried out
to restructure and reorganise the application data and functionality into a form that is
more suitable for the new platform/environment. Then forward engineering is applied
to construct a new application version from the extracted specification. Reverse and
re-engineering are typically a combination of manual and tool-supported processes.
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7.1.1 Model-Driven Modernisation (MDM)

MDM is defined as a process in which software models are used to support the
re-engineering of applications. For example, the OMG’s Architecture driven mod-
ernization envisages the use of tools to analyse and transform legacy components to
high-level models, restructuring of these models, and regeneration of a modernised
system from the models. The REMICS MDM migration method (www.remics.eu)
has the stages: Requirements and feasibility; Recover; Migrate; Validation; Super-
vise; Interoperability. The method is oriented to modernisation of applications for
service-oriented architectures (SOA) and the Cloud.
In general, the MDM re-engineering process (Fig.7.1) involves:

e Using transformations to analyse an existing system, and to abstract out key infor-
mation (reverse-engineering) into a platform-specific model (PSM)

e Extracting key business entities and rules from the PSM and expressing them in a
platform-independent model (PIM)

e Using transformations to generate a new system/version on a new platform based
on the abstracted data and logic.

7.2 Case Study: Matlab to C#

This project aimed to extract functionality from an existing large library of Mat-
lab financial/statistical routines, to rationalise this, and then to re-engineer it to C#
code. The business motivation was to remove the dependence of important business
services on the poorly-understood and costly to maintain legacy code. In addition,
it was intended to move the services to a modern software platform with improved
interoperability.
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Fig. 7.2 Matlab to C#
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A proposed approach for this project was to abstract the application to a platform-
independent specification in UML-RSDS, in order to provide high-level specifica-
tions of the existing code in the context of relevant financial theory (no specification
of the Matlab code existed), and to have some assurance that the C# version has the
same functionality as the original (Fig.7.2). The UML-RSDS representation also
supports the use of refactoring and design patterns to improve the system structure.
The legacy code architecture is preserved in general, unless it is clearly faulty or
inappropriate for the modernised system.

Particularly important for this re-engineering project are the collect and select
OCL operators:

e col—collect(x | e)

The sequence of values e(x1), ..., e(xn) of e(x) for x1, ..., xn in col
e col—select(x | P)

The subcollection of col elements x which satisfy P.

For example:

Set{l1,2,3}—collect(i | i i xi) = Sequence{l, 8,27}
Set{“aa”, “bgf”, ", “xxy”}—select(s | s.size > 2) = Set{“bfg”, “xxy”}

These are used to define Matlab matrix and vector operations.

Matlab vectors (arrays of single values) are represented as OCL sequences, e.g.,
[3, 5, 7] becomes Sequence{3, 5, 7}. Matrices are represented as sequences of
sequences, e.g., [3, 5, 7; 2, 1, 11 is Sequence{Sequence{3,5,7},
Sequence{2, 1, 1}}. This provides a direct means of formally specifying Matlab oper-
ations, for example, the maximum max (A) of a numeric matrix is

A—>collect(s | s—max())—max()
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Table 7.1 Correspondence of Matlab and UML

Matlab construct UML-RSDS representation
Script/program Use case

Code sections Included use cases/invoked functions
Global variables Static attributes of Global class
Functions Functions

Vectors Sequences

Matrices Nested sequences

Control statements Activities

Table 7.2 Mapping of Matlab expressions to UML

Matlab construct UML-RSDS representation

a:b integers Integer.subrange(a, b)

I:s:u doubles Real.subrange(l, s, u)

prod(a:b) a, b integers Integer.Prd(a, b, i, i)

m(i,:) matrix m m[i] (i’th row)

m(:,j) matrix m m—collect(i | m[il—at(j)) (§’th column)
m(i,j) mli]—at(j) i,j element

m(:) m—> flatten() concatenate rows

A.*B Matrix.mmMult(A,B) matrices A, B
A*B Matrix.matrixProd(A,B) matrices A, B
A== Matrix.mmEq(A,B) matrices A, B

That is, for the elements (rows) of A, collect together their maximum elements, and
then take the maximum of these maximums.

Tables 7.1 and 7.2 show the correspondence of Matlab elements and UML ele-
ments. The use of function references is simulated by defining suitable XFunction
classes for different function signatures, and using objects of these classes as function
references.

Vector operators are defined in the Sequences library, and matrix operators in the
Matrix library. For example:

static query ssAdd(sl : Sequence (double),

s2 : Sequence (double)) : Sequence(double)
pre: sl.size = s2.size
post:
result =
Integer.subrange(l,sl.size)->collect( 1 | s1[i] + s2[i] )

in Sequences creates a new vector as the element-wise sum of two others. A matrix
is represented as a sequence of rows: m : Sequence(Sequence(double)), with m[i]
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as the i’th row. Element-wise addition of matrices uses the ssAdd operation to add

corresponding rows of the matrices:

static query mmAdd (ml

Sequence (Sequence (double))

m2 : Sequence (Sequence (double)))
Sequence (Sequence (double))

pre: ml.size = m2.size
post:

result =

Integer.subrange(l,ml.size)->collect( i |
Sequences.ssAdd(ml[i], m2[i] ))

Many other vector and matrix operations can be defined in the same manner (Fig. 7.3).
Some example Matlab code is the following section, which forms a Matlab routine

to compute a series of put option prices:

price = [120.0, 100.0, 102.0, 163.01;

strike = [115.0, 120.0, 95.0, 170.0];

rate = 0.05

dt = 1.5;

vol = [0.1, 0.2, 0.4, 0.25];

yvield = [10 0, 5.0, 4.0, 11.071;

[7, p] = blsprice(price, strike, rate, dt, vol, yield)
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During analysis we can recognise that blsprice is a call to a Black—Scholes European
option pricing routine (uk.mathworks.com/help/finance/blsprice.html).

The section is abstracted to a UML-RSDS use case with internal variables price,
strike, etc, and postconditions:

price = Sequence{120.0, 100.0, 102.0, 163.0} &
strike = Sequence{115.0, 120.0, 95.0, 170.0} &
rate = 0.05 & dt = 1.5 &

vol = Sequence{0.1, 0.2, 0.4, 0.25} &

yield = Sequence{10.0, 5.0, 4.0, 11.0}

Integer.subrange(l,4)->forall( i | pl[i] =
FinLib.euPutOptionPrice(price[i], strikel[il],
rate, yield[i],
dt, vol[i]l, 0) )

This is the formal specification of the section, using the FinLib platform-independent
financial library.

7.2.1 Yield Curve Estimation

This case study consisted of a large Matlab library to estimate yield curves, using
the Nelson-Siegel-Svensson model [3] and variations on this model. It was unclear
exactly which estimation algorithms were used, or their validity. Re-engineering
involved specification of the required functionality and identification of alternative
algorithms/techniques for estimation.

A yield curve shows a range of interest rates/yields for investments of different
maturities/terms. The yield is the annual rate of return on an investment. Longer
loans/investments tend to have higher yields, so a curve normally increases from low
terms to higher terms. The yield y(¢) for investments of duration ¢ is also referred to
as the t-year spot interest rate. The investments considered should be zero-coupon
bonds, that s, they do not return interest during their term but only at their end. Hence,
y(¢) is also called the t-year zero-coupon yield. Coupon bonds can be converted to
equivalent zero-coupon bonds by considering them to have term ¢ equal to their
Macaulay duration, with a payment of value(r) on that date (Sect.4.6).

Only a few time points will have market data or known yields, corresponding to
bonds which are available in the bond market, and which are comparable in terms of
their origin and risk levels. Yields for other terms are interpolated from the known
yields. Different models have been defined for the shape of yield curves. One of the
most widely used is the Nelson-Siegal (NS) model for yield curves (Fig.7.4), which
assumes that the yield satisfies a formula
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Fig. 7.4 Yield curve models

y() = B+ B x (1 —exp(=1/ X))/t M) +
B # (1 — exp(=t/ M) /(] M) — exp(—t/ Ap)

The yield curve according to this model has a long-term rate component (3;),
short-term component (2nd factor), and a ‘hump’ (3rd factor). The problem is to
estimate the (3; and A, for the curve which best fits the given market data: this is
termed ‘fitting the curve’ to the data. Usually some form of sum of squared differences
between the estimated curve and the market data is used as a measure of fit. The
Nelson-Siegal-Svensson (NSS) model adds a further ‘hump’ term to the Nelson-
Siegal model, with additional parameters 34 and \,. This enables closer fitting of the
curve to data in some cases, but also increases the computational cost of the fitting
procedure.

The Nelson-Siegal model can be specified in UML by the following functions of
NelsonSiegalYC:

static query nelsonsiegal (t : double,
vl : double, v2 : double, v3 : double,
lambdal : double) : double
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Fig. 7.5 Simplex class diagram

pre: t > 0 & lambdal > 0

post:
tscaledl = t/lambdal &
exptscaledl = (-tscaledl)->exp() &
expratiol = (1 - exptscaledl) /tscaledl &
result = vl + v2*expratiol +

v3* (expratiol - exptscaledl)

static query ns(t : double, vl : double,
v2 : double, v3 : double,
lambdal : double) : double
pre: t >= 0 & lambdal > 0

post:
(t = 0 => result = vl + v2) &
(t >0 =>

result = NelsonSiegalYC.nelsonsiegal (t,vl,v2,v3,lambdal))

The steps of the re-engineered estimation procedure are:

. Create InterestRate instances for the market data

. Produce a number of NelsonSiegalYC instances which provide possible esti-
mated parameters to fit the data, using a commercially-confidential algorithm

3. Select the best of these, using a sum of squared differences measure of fit, and

apply a numerical optimiser to refine the estimates.

N =

For the second stage possible techniques include evolutionary algorithms such
as genetic algorithms or differential evolution [3]. For the final stage we could use
algorithms such as Matlab’s fminsearchbased on the simplex algorithm (Fig. 7.5).

The Nelder—Mead simplex algorithm performs a deterministic search to find a
point where a minimal value of the associated n-ary function f is attained, n > 1.
The attribute dim is the dimension n of the search space, the simplex consists of n+1
points, each point has n double-valued coordinates.
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We can formalise the simplex algorithm in UML by the following operations of
the Simplex class:

initialise(x : SimplexPoint)
post:
x : points & dim = x.dim &
Integer.subrange(l,x.dim)->forAll( i |
SimplexPoint->exists( p |

p.coords = ( x.coords.subrange(l,i - 1) ~
Sequence{ (x.coords->at(i)) * 1.05 } ~
x.coords.subrange (i + 1,x.dim) ) &
p.dim = x.dim & p : points ) ) &

points->forAll( p | p.fval = f.apply(p))

initialise generates an initial simplex including dim points based on 5% displace-
ments in each dimension i : 1..dim of the starting point x, and x is also included in
the simplex points (so there are dim + 1 points in total). The f value of each point is
then computed and stored in its fval attribute.

sortPoints sorts the points in ascending order of their f values:

sortPoints() : boolean

post:
points = points@pre->sortedBy (fval) &
result = true

The expression s defined by col— sortedBy(e) is a sequence formed by re-ordering
collection col such that the elements of s are in non-descending order of the expression

e evaluated on them, ie:
s[il.e < s[i+ 1].e

for 1 <i < col.size. Usually e is an attribute of the objects in col, as in the above
situation.

Hence the points sequence is ordered in terms of the degree of approximation
to the point of minimum f value, with the best point (with lowest f value) being
points[1], and the worst being points[dim + 1].

computeMeanReflection ()
post:
SimplexPoint->exists( m |
m.coords = Sequences.sgAverage (points.front->collect (coords)) &
m.dim = dim &
m.fval = f.apply(m) &
mean = m ) &
SimplexPoint->exists( r |
r.coords = Sequences.ssSubtract (
Sequences.sgMult (mean.coords, 2.0), points.last.coords) &
r.dim = dim &
r.fval = f.apply(r) &
reflection = r)
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computeMeanReflection generates an average point mean of the points.front sequence
(i.e., ignoring the worst point) and a reflection point:

reflection = 2 x mean — points[dim + 1]

Vector computations on points are performed by vector algebra upon their coordinate
sequences, using operations ssAdd, ssSubtract, etc, from the Sequences library.

The main part of the algorithm then uses various strategies to replace the worst
point points[dim + 1] with an improved point with lower f value, or in the final case
(shrink) to contract the simplex around the best point. We always store f (p) in p.fval
for a simplex point p when p is created or updated, in order to avoid recomputation
of f on p: this is another form of function caching.

reflectExpand()

post:
(points.first.fval <= reflection.fval &
reflection.fval < points[dim].fval =>

points[(dim+1)] = reflection) &
(reflection.fval < points.first.fval =>
self.expand()) &
(points([dim] .fval <= reflection.fval =>

self.contract())

expand ()
post:
SimplexPoint->exists( s |
s.coords = Sequences.ssAdd(
mean.coords, Sequences.sgMult (
Sequences.ssSubtract (mean.coords,
points.last.coords), 2.0)) &
s.dim = dim &
s.fval = f.apply(s) &
((s.fval < reflection.fval => points[(dim+l)] = s) &
(reflection.fval <= s.fval => points[(dim+1l)] = reflection)))

contractOutside(c : SimplexPoint)

post:
(c.fval < reflection.fval => points[(dim+l)] = c) &
(reflection.fval <= c.fval => self.shrink(points.first))

contractInside(cc : SimplexPoint)
post:
(cc.fval < points.last.fval => points[(dim+l)] = cc) &

(points.last.fval <= cc.fval => self.shrink(points.first))

contract ()
post:
(reflection.fval < points.last.fval =>
SimplexPoint->exists( ¢ |
c.coords = Sequences.ssAdd (mean.coords,
Sequences.sgMult (
Sequences.ssSubtract (reflection.coords,
mean.coords), 0.5)) &
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c.dim = dim &
c.fval = f.apply(c) &
self.contractOutside(c)) ) &
(reflection.fval >= points.last.fval =>
SimplexPoint->exists( cc |
cc.coords = Sequences.ssAdd(mean.coords,
Sequences.sgMult (
Sequences.ssSubtract (points.last.coords,
mean.coords), 0.5)) &
cc.dim = dim &
cc.fval = f.apply(cc) &
self.contractInside(cc) ) )

shrink(xl : SimplexPoint)
post:
Integer.subrange (2, dim+1l)->forAll( i |
points[i].coords =
Sequences.ssAdd (x1l.coords,
Sequences.sgMult (
Sequences.ssSubtract (points[i] .coords,
x1l.coords), 0.5) ) &

points[i].fval = f.apply(points[i]) )

iterate(tol : double) : SimplexPoint
activity:
execute sortPoints() ;
while diameter() > tol
do
execute (
computeMeanReflection() &
reflectExpand() &
sortPoints() )
return points[1]

7

diameter() measures the diameter of the simplex, the distance between points[1] and
points[dim + 1].

The Matlab fminsearch(f, x) call for a double-valued function f of two or more
double-valued parameters is expressed as the invocation NumericOptLib.simplex
(f, x, 0.0001) of the simplex algorithm:

static simplex(f : NFunction, x : Sequence (double),
tol : double) : SimplexPoint
pre: tol > 0
post:
SimplexPoint->exists( p |
p.dim = x.size &
p.coords = X &
Simplex->exists( sx |
sx.f = £ &
sx.dim = x.size &
sx.initialise(p) &
result = sx.iterate(tol) ) )
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For NS estimation, the definition of apply in NSFunction is the sum of squared
differences of the NS curve from the market data points (r.maturity, r.rate):

query apply(p : SimplexPoint) : double
post:

betal = p.coords[l] &

beta2 = p.coords[2] &

beta3 = p.coords[3] &

lambda = p.coords([4] &

result = InterestRate->collect( r |

( r.rate - NelsonSiegalYC.ns(r.maturity, betal, beta2,
beta3, lambda) )->sqr() )->sum()

Instead of using yields, market price data can be used to fit the curve. In this case, the
simplex could operate with a function object with apply defined as the sum of squared
differences between the actual bond prices and those obtained from the curve.

We tested the above procedure with an example of eight zero-coupon bonds with
durations ranging from 1 to 10 years. Using yields to measure the degree of fit, we
obtained the following initial parameter values for the market data given above:

B = 0.06195893810393646
B, = —0.061204959672191465
5 = 0.1289089344485046

A\ =20

The accuracy (sum of squared differences to the market data yields) of this estimated
curve is 1.8 % 1074,
After refinement using the simplex algorithm, the parameters become:

61 = 0.06594219551067752
G, = —0.06593501071223262
03 = 0.12226954660991908
A; = 1.8624443350354993

The accuracy is improved to 6 % 107°.

The curve produced from these parameters is shown in Fig. 7.6.

A similar procedure can be defined for NSS curve estimation, using simplexes
with 6 points instead of 4.

ol LElUMN Zyl_i.lbl
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Fig. 7.6 Estimated yield curve

Summary

In this chapter we have described how MBD and UML can be used to support
the modernisation of financial software via re-engineering. The process has been
illustrated with a practical example of a Matlab to C# re-engineering project.

Exercises

1. Evaluate y(n * A;) for the Nelson-Siegal model, for positive integer n.
Since y(t) > 0is normally expected for any ¢ > 0, what constraints can be inferred
relating the (3;?

2. Let the slope(n : int) : double of a NS curve be defined as (y(n x A\;) — y(0))/n.
Express the definition of slope as an operation of NelsonSiegalYC.

3. What are the approximate conditions for slope(n) to be (i) positive; (ii) negative,
when n > 10?

4. We have discussed the spot interest rate curve in this chapter. Also of concern in
finance is the forward interest rate curve.

The forward interest rate fr(n) is the annual interest rate for a year n years in the
future, deduced from the spot rates y(n) and y(n + 1).

Given an investment of amount N held for duration n + 1, N should have gained
in value to N % e"*+D*"+1 at jts term. But this can also be divided into an investment
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of N for duration # at rate y(n), and a 1-year investment of N x ¢ at rate fr(n).
Derive an equation for fr(n) in terms of y and n, assuming continuous compounding.
5. Assume a NS model for y(r) and express fr(¢) as a formula in the NS terms.

6. What are the efficiency trade-offs in using bond prices versus using yields to fit a
yield curve?
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Chapter 8 ®)
Agile Model-Based Development i
Approaches

In this chapter we describe:

e Existing agile MBD approaches
e Guidelines for introducing agile MBD
e How to define and use DSLs for finance.

8.1 Existing Agile MBD Approaches

A number of development approaches have been defined and used to combine the
benefits of agile and MBD approaches [1]:

e MDD-SLAP: used in the telecomms domain (by Motorola). UML and SDL mod-
els are used (sequence diagrams, state machines, class diagrams). Each itera-
tion is divided into three stages: requirements/architecture, development, integra-
tion/testing [2].

e SunGard approach: used in the finance domain (trading systems). The approach
uses XML models, and the Scrum and Kanban methods [3].

e Hybrid MDD: used for web applications. The approach uses XML models, and
XSLT transformations [4].

e Volvo Car Group: used for automotive systems, with Simulink and device models
for vehicle ECUs, which are refined in short iterations [5].

e UML-RSDS: used for transformations and financial systems. It uses UML models
(primarily class diagrams, use cases and OCL), it follows a Scrum process [6] with
three-phase iterations.

Generally, benefits have been found from agile MBD in providing improved stake-
holder collaboration and improved reusability [3], and improved flexibility in devel-
opment [5]. The combination has also improved the usability of MBD within contexts
where there is.not established expertise. in. MBD [3].
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8.2 Guidelines for Introducing Agile MBD

The introduction of MBD can be difficult due to the complexity of general-purpose
modelling languages such as UML, which consequently have complex supporting
tools and high training costs. A focus on agility and lightweight modelling can make
the use of MBD more feasible, by either (i) using only an essential subset of UML
oriented to a particular application area/platform; (ii) using XML or a similar minimal
modelling language; (iii) using a domain-specific language (DSL), i.e., a modelling
language constructed for the particular application area.

UML-RSDS represents approach (i). This has the advantage of using a fully-
featured industry-standard modelling language, and avoids the effort needed to create
a DSL. Approach (ii) suffers from the limitations of XML, which is oriented to
text representation of tree-structured data. Regarding (iii), industry surveys have
found successful introduction of MBD in cases where modelling is used to define
DSLs and code templates (model to text transformations) for narrow domains. The
DSL and templates encode expertise in the domain. If organisations are able to
take a long-term view, the DSL approach enables them to use MBD for product
lines. Libraries of functions and components for the domain can be established and
maintained to form a domain platform, upon which new applications can be built. For
example, operations calculateMaturityPrice(now : double, r : double) : double and
calculateValue(now : double, r : double) : double based on Black—Scholes option
pricing can be added to the domain model for financial assets and derivative securities
to form a platform for this domain (Fig. 8.1).
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Useful practices for agile MBD include:

e Modelling as coding, with executable models serving both as specifications and
as implementations.

e Performing refactoring, quality analysis and testing at the specification level.

e Using text-based model editing tools to accelerate development compared to graph-
ical editors.

e Paired modelling (e.g., a developer and a customer representative both work
together on the same model).

e A parallel tooling team supporting the main development team. This separates the
MBD tooling work from the main application development activity and means that
the main team does not need to have the specialised expertise required for MBD
tool development.

e Extending the scope of model-based construction of elements, avoiding manual

coding wherever possible.

Reusing existing systems and libraries wherever possible.

Using MBD experts to train and lead teams.

Key issues include the high learning curve for developers (for MBD), and the need
for traceability between models and code. Integrating/merging changes in multiple
models is a potential problem with the use of MBD and agile MBD—this can be
reduced by minimising the number of independent models. It is necessary to establish
an effective tool chain of interoperable MBD tools to support a project. We have
found graphical editing of models too slow in practice, and hence we recommend
the use of a text-based editor to support rapid revision of large application models.
Automatic layout tools can be used to produce visual representations of the models
when needed.

Note that while UML-RSDS includes a substantial subset of UML 2, it does
not include mechanisms for real time specification, such as setting execution time
bounds on operations. It does not include mechanisms for specification of explicit
parallelism.

Existing practice in financial software development involves prototyping in a lan-
guage such as Excel, Matlab or Python, and then either (i) retaining these prototypes
as production software, or (ii) using manual coding to produce versions in a program-
ming language such as C++ or C#. Option (i) has deficiencies in terms of software
quality and efficiency, whilst option (ii) is costly, and involves duplicating the soft-
ware functionality. Our approach retains the specification and prototype, but uses
automated code generation to produce an efficient production implementation from
these.
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8.3 Defining and Using DSLs

DSLs are used to express domains, including business domains (e.g., financial deriva-
tives) or technical domains (e.g., EIS architectures). DSLs capture the common ele-
ments and key concepts of the domain and organise these into a language which can
be reused as the basis for the specification of many different applications within the
domain.

Transformations can read DSL models and produce code or other artifacts.
The transformations automate previously manual development processes and steps.
Transformations together with the DSL encode domain knowledge and expertise.
DSLs also enable application modelling using terminology familiar to stakeholders.

To construct a DSL the following steps are typically taken:

e Identify the key terminology/concepts in a specific domain (the domain ontology).

e Model these concepts in a class diagram—this defines the abstract syntax of the
DSL as a metamodel/language. Operations and use cases can be included, if they
represent functionality and procedures which are significant in the domain (and
which are not already defined in a library).

e Identify a concrete syntax for DSL models, which is convenient for stakeholders
and for automated processing. A text format is also needed for the serialisation
syntax used to store/transmit models.

e Define model parsers and transformations operating on DSL models, to produce
other required artifacts, such as code, test cases, model analyses or graphical
representations.

Using UML-RSDS, DSLs can be defined as class diagrams. A default concrete
syntax is then provided by the textual form of instance models of these class diagrams.
Such models are stored in text files consisting of lines of the form (i)

obj : E

expressing that obj is an instance of DSL entity E, or (ii)
obj.f = value

expressing that the value of the single-valued feature f of 0bj is value, or (iii)
obj : x.f

expressing that obj is an element of the collection-valued feature f of instance x. This
text format is also the default serialisation syntax (an XML format is also available).
UML-RSDS transformations can read and write such model files, and therefore can
perform tasks such as code generation or semantic mapping of the models.
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8.3.1 DSL Example: Derivative Securities

We can construct a DSL based on the standard financial terminology and concepts
in the domain of derivative securities (Fig.8.1):

e The entities include Derivative security, with specialisations Option, Forward
contract, Futures contract, etc.

e Other entities could include: Trader, Contract, Investor, Exchange, Asset, Com-
modity, Stock, Margin account, etc.

e Associations and attributes could include: underlyingAsset, repo rate, value,
futures price, expiration date, delivery price, strike price, spot price, etc.

e Operations can be defined to compute the value and maturity price of each category
of derivative security.

Ideally, the most experienced available domain experts should advise on the DSL
model elements and structure. After defining the class diagram, it should be reviewed
and refined based on its intended uses. Refactoring can be used to improve the quality
of the DSL, to remove redundancies and simplify its structure.

The Contract class expresses properties intrinsic to a particular contract (such
as its position) and properties which may typically be open to negotiation between
an investor and the supplier of a financial product (asset). For example, the pur-
chase price and date. In contrast, Asset and its subclasses contain properties that
are intrinsic to the product and cannot be negotiated, such as the volatility. We have
rationalised the diagram to avoid duplication, for example the attribute maturityPrice
of DerivativeSecurity expresses the common concept of delivery, futures and strike
prices found in specific kinds of derivative security. These separate attributes were
merged as a result of analysis and refactoring.

A concrete representation for derivative securities could be spreadsheet data tables
(Table 8.1).

Other model data (Investors, Contracts, Assets) can also be represented in a similar
way. CSV-format spreadsheet models can be easily parsed and mapped to instance
models in UML-RSDS. An alternative would be the standard object representation
notation:

: Stock
.name = "IBM"

.tradeable = true

a
a

a.amount = 100

a

a.price = 145.16

Table 8.1 DSL concrete syntax

Id Type Maturity Maturity price Underlying asset
Id

“1” “calloption” 2021.0 125 “3”
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: CallOption
.amount = 1
.maturity = 2021.0
.maturityPrice = 125
.underlyingAsset = a

XX X XX

The model can represent common situations such as hedging using derivatives.
For example, if an investor in shares wants to hedge the risk of the unit price of a
main contract ¢ : Contract holding an equity asset a with quantity c.quantity being
below a level P at a future date now + ¢, they can also enter into a supplementary
contract cf : Contract to hold American put options f with f.maturity = now + t,
cf .quantity = c.quantity, f .underlyingAsset = a, and f .maturityPrice equal to P. At
the future date, if the share price is Q > P, then the investor will not exercise the
options, and instead can sell quantity c.quantity of a at Q per unit. Their profit is only
reduced by the cost V of the options. On the other hand, if O < P, they can exercise
the options and sell quantity cf .quantity at P (because of contract cf’), making a profit
of (P — Q) * c.quantity — V.

The above assumes that one futures contract is for one share, in practice a contract
for a derivative such as an option based on a share would be an option to sell or
purchase multiple (typically 100) shares.

The value of each security can be calculated using a calculateValue(now, r) oper-
ation, where now represents the current date, and r is the relevant risk-free interest
rate. The operation is defined for each kind of derivative security. For long forward
contracts, we have the general equation (using continuous compounding):

value = (S — 1) x e 9 — K s "

where S is the current price of the underlying asset, ¢ is the continuous dividend
yield rate of the asset, T is the maturity date (years), ¢ the current date, dt = T — ¢,
and 7 is the present value of the income from fixed payments from the asset over
the period dr (for example, coupon payments in the case of a coupon bond), K is
the maturity price, and r is the relevant risk-free rate of interest. The reason for
this equation is that the forward contract plus K * e~ in cash (invested at rate r)
is equivalent as an investment to buying a proportion e~%*¥ of the share now (for
S % e~ and borrowing amount I % e~9*%_In the first case, by maturity, K has been
earned from the cash and the share can be bought with this. Conversely, if the share
fraction had been bought and all dividend income re-invested in purchasing more of
the share, the holding would have grown to one share. The fixed payments from the
share fraction would also have paid off the borrowed fraction of /. Hence the value

of this investment at maturity is also one share.
Therefore, we can specify the operation definition:

ForwardContract: :
query calculateValue (now : double, r : double) : double
post:

dt = maturity - now &
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maturityValue = maturityPrice* ((-r*dt)->exp()) &

income = underlyingAsset.totalIncome (now, maturity) &

dividendYield = underlyingAsset.dividendRate &

result = (underlyingAsset.price - income) *
((-dividendYield*dt)->exp()) - maturityValue

This definition also applies for FuturesContract. For short forward/future contracts
the value is —calculateValue(now, r).
The maturity price K which makes the present value 0 is given by:

K=(S—1) e/
and this can be expressed as an operation

ForwardContract: :
query calculateMaturityPrice(now : double, r : double) : double
post:
income = underlyingAsset.totallIncome (now, maturity) &
dividendYield = underlyingAsset.dividendRate &
result = (underlyingAsset.price - income) *
((r-dividendyield) * (maturity-now) ) ->exp ()

This is valid for both long and short positions in the forward/future contract.
For options, we can reuse library operations such as

FinLib.euPutOptionPrice(underlyingAsset.price, maturityPrice, r,
underlyingAsset .dividendYield, maturity — now,
underlyingAsset .volatility, income)

to value the security. These are defined using the solutions for the Black—Scholes
equation [7].

According to the Black—Scholes analysis, a European call option with term df =
T — t, on a non-divided paying share asset with price S has the current value

c=S*Nd) —Xxe ™ xN(d>)

where N is the cumulative probability distribution function for the normal distribution
with mean O and standard deviation 1. d; and d, are defined in terms of S, X (the
maturity price), dt = T — t, r and o, the volatility of the underlying asset. This is also
the value of an American call option (under the assumption that it is never optimal
to exercise such an option prior to maturity).

di(S,X,dt,r,o) = ((S/X)—>log() + (r + o.sqr/2) = dt) /(o * dt.sqrt)

and
d)(S,X,dt,r,0) =d(S,X,dt, r,0) — o xdt.sqrt
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A European put option on such an asset has the value
p=Xxe "% N(—dy) — S« N(—d,)

There is no precise formula for an American put option, but various approximation
techniques can be used to compute it.

If the asset pays an known income over its lifetime (e.g., a share that pays known
cash dividends at certain time points), then the present value I of the income is
subtracted from S:

c=(—Dx*Nd) —Xxe ™ xN(dj))

where d and d are computed as d;(S — I, X, dt, r,o) and d»(S — I, X, dt, r, 0).
The corresponding put valuation is

p=Xxe "« N(=d)) — (S — 1) x N(—d})

If instead of a specific income, the asset pays a continuous dividend (dividendRate
in Fig.8.1) equal to ¢, we have the valuations:

c=S*xe P % N(d]) — X % e ™" 5 N(d))

and
p=Xxe "M« N(=d)) — S % e x N(—d])

where d and d} are computed as d; (S, X, dt,r — q, o) and dr(S, X, dt, r — q, 0).

The same formula applies to assets which are foreign currencies, with ¢ being the
risk-free interest rate in the foreign currency.

A simple approach to bond options is to value them in a similar way to share
options: in the case of a zero-coupon bond, S is taken as the bond price, o as the
volatility of this price, and r as the risk-free interest rate for an investment of duration
dt. For a coupon bond, the income / from the bond is evaluated as the discounted
sum of the coupon payments during the interval dt and then the formulae applied
with § — I instead of S.

euPutOptionPrice can therefore be defined as:

static query euPutOptionPrice(s : double, x : double,
r : double, g : double, dt : double,

sigma : double, income : double) : double
pre: sigma > 0 & dt > 0
post:
adjustedS = (s - income) * ((-g*dt)->exp()) &

dl = FinLib.bsdl (s-income,x,dt,r-g,sigma) &
d2 = FinLib.bsd2 (s-income,x,dt,r-gq,sigma) &
result =

x* ((-r*dt)->exp() ) *NormalDist.cumulative (-d2) -
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adjustedS*NormalDist.cumulative (-dl)

Where:

static query bsdl(s : double, x : double, dt : double,

r : double, sigma : double) : double
pre: sigma > 0 & dt > 0
post:
result = ((s/x)->log() +
(r + sigma.sqgr/2.0)*dt)/ (sigma*dt.sqrt)

and

static query bsd2(s : double, x : double, dt : double,
r : double, sigma : double) : double
pre: sigma > 0 & dt > 0
post:
result = FinLib.bsdl (s,x,dt,r,sigma) - sigma*dt.sqrt

Note that if a called operation has a precondition P, any caller of the operation has to
ensure P at the point of call, which in this case is done by repeating the precondition
P as the caller’s precondition.

Summary

In this chapter, we have reviewed existing agile MBD approaches and identified
guidelines for introducing agile MBD in practice. We also illustrated agile MBD
techniques and an example of using DSLs with agile MBD.

Exercises

1. Considering the definition of value for long forward contracts given above, how
does this value change as the difference dr decreases?

2. Put-call parity is the relationship
cHXse ™M =p4S
for the values p and ¢ of European put and call options on the same stock

(for non-dividend paying shares). Use this relationship to give a definition for
euCallOptionPrice in terms of euPutOptionPrice.
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3. A bull spread is a combination of two call options on the same amount of the same
stock with the same maturity date. This consists of a long position in the first option,
and a short position in the second, with the first option having a lower strike price
than the second. Express a bull spread in terms of the derivative securities DSL.
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Chapter 9
Analysis of Financial Products: CDOs e

In this chapter we give a detailed example of mathematical analysis of a particu-
lar financial product—collateralised debt obligations (CDOs)—and show how the
theoretical results obtained can be expressed as software specifications.

We revisit the seminal work of Davis and Lo [1] on CDO analysis, and expand on
related work by Hammarlid [2] in regards to a moment generator (based on assuming
a Poisson number of outbreaks) to determine risk contributions to a CDO.

9.1 Introduction

In this chapter we expand on the proofs provided by Davis and Lo in [1] regarding
Theorem 1 of their paper. Although no new results are obtained (as it relates to [1]),
we develop the theorem to illustrate the way that such results can be obtained. We
also determine sector risk contributions in the framework of the Hammarlid model
[2] and derive a simple formula for these contributions.

9.2 Preliminaries

In [1] the authors consider a portfolio of » identical bond/loan securities (not neces-
sarily independent of each other). Each such security is assumed to have the same
default probability, recovery rate etc. A random variable Z;, i = 1..., n taking the
value Z; = 1 if bond i defaults and Z; = 0 otherwise is used to model the default
status of a single borrower i. Later, in this section, it is shown that such defaults
could be caused either by a direct default of borrower i or by contagion due to the
default of another borrower j # i.
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Fig. 9.1 Simple CDO model
cbo 1

p: double
q: double

pdefaults(k: int) :

loans | * {ordered}

Borrower

With the above setup, the total number of borrowers defaulting is thus given by
N=Z+Z,+---+2,. 9.1)

Let X;, Y;; be independent Bernoulli random variables denoting the default status
of a borrower i (i.e., X; = 1 if i defaults or X; = 0 otherwise) and whether default of
borrower j affects borrower i (i.e., Yj; = 1) or otherwise (i.e., ¥j; = 0) with

PIXi=1]=p
PlYi=1]=gq.

This corresponds to a model of CDOs in which the probability of borrower defaults
is the same, p, for every borrower, so this probability can be defined as an attribute
in the CDO class (Fig.9.1), and likewise for the probability of infection, g. Loan i is
represented by loans[i] in Fig.9.1, and n is loans.size.

The random variable Z; can now be defined:

Zi=Xi+ (1 =X) (1 = M (1 = X;73)) . 9.2)

From Eq.9.2 we note thatif X; = 1 (i.e., i defaults) then it does not matter whether
any other borrower j defaulting affects i (i.e., X; =1 and Y;; = 1) since the first
bracketed term on the right side of the equation guarantees that only a direct default
contributes to Z; = 1. Conversely if X; = 0 (i.e., i does not directly default) then in
order for Z; = 1 it is required that X; = 1 and Yj; = 1 for at least one j # i.

As the joint distribution of (Z,...,Z,) has the same joint distribution as
(Za(l), R Za(n)) for any finite permutation o of the indices 1, 2, 3... we say that
Z;,i=1,...,nis exchangeable.

9.3 Davis and Lo Theorem

In [1] Davis and Lo proved the following result.
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Theorem 9.3.1 The distribution function F of the probability P[N=k] of k defaults
is defined by

F(n k,p,q) = Clayl = P[N =k, (9.3)
where
ant =p* (1 =p)"* (1 — )"
k—1

+3 A —py T (1= (1= g)) T (1= g

i=1

Proof
Note that since the Z;, i = 1, ..., n are exchangeable we can write the event indicat-
ing that k borrowers have defaulted as Z; = 1,..., 4, = 1,241 =0, ..., Z, =0

since all other permutations of the Z’s will produce the same probabilities. This
event can be achieved in one of 2 ways: either the k borrowers default directly (i.e.,
X;=1,i=1,...,k) and do not cause any contagion with the other bonds (i.e.,
Y;=0,i=1,...,k,j=k+1,...,n) orasubset of the k borrowers (i say, where
i < k) directly default and spread contagion to the remaining (k — i) borrowers but
not to the borrowers corresponding to indices k + 1, ..., n.

For the first case, since we assume that k borrowers have defaulted directly (each
with probability p) there must be n — k that do not default directly (each with prob-
ability 1 — p). The joint probability of these two events is p* (1 — p)"~*. As the
k defaults do not affect the other borrowers this implies that there are k (n — k)
combinations where there is no contagion (with probability 1 — g) resulting in the
probability (1 — ¢)*~®_ Since the X’s and Y’s are independent the joint probability
is just the product:

P =py A= gt

For the second case, we assume that given an i where i < k borrowers directly
default (each with probability p) and hence n — i do not default directly. The proba-
bility that this event occurs is p’ (1 — p)"~*. Note that since the i direct defaulters only
affect k — i of the first borrowers then there will be n — k borrowers not affected by
contagion (each with probability 1 — ¢). This implies that there are i (n — k) com-
binations where there is no contagion with probability (1 — ¢)""~®. Given that i
defaulters affect k — i via contagion we should account for the i that are not affected
by contagion (which are those that default directly) which is given by the probability
(1 — g)". Hence given this probability, the probability that a borrower defaults via
way of contagion is given by 1 — (1 — g)'. Slnce there are k — i of these affected

borrowers the total probability is (1 —(1—¢) ) . Combining the probabilities we
getp' (1—p)" (1— (1 =) (1 = g ¥.
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Note that in assuming that there are i borrowers defaulting (this i is arbitrary)
we should account for the fact that the above analysis is true for any i < %, i.e.,
i=1,...,k— 1. Further, since there are Cf ways of choosing the i from the k and
given exchangeability the total probability of the second case is

Zi:ll Cfpi (1 —P)"ii (1 —(1- q)i)k_i a- q)i(nfk) '

Finally we note that there are C}’ ways of choosing the fixed total number of defaulters
k from the n and hence the total probability P [N = k] is as given in the theorem. []

This result can be used to define the probability of k defaults in the model of
Fig.9.1 by the operation

CDO: :
query pdefaults(k : int) : double
pre: k >= 0
post:
n = loans.size &
result = MathLib.combinatorial (n, k) *alpha(n,k)

Where:
CDO: :
query alpha(n : int, k : int) : double
pre: k >= 0
post:
directDefault =

(p->pow (k) ) * ((1-p) ->pow (n-k) ) * ((1-q) ->pow (k* (n-k))) &
indirectDefault = Integer.Sum(l,k-1,1i,
MathLib.combinatorial (k,i) *
(p->pow(i)) * ((1-p)->pow(n-i))
((1 - (1-qg)->pow(i))->pow(k-1i)) *
((1-g)->pow(i*(n-k)))) &
result = directDefault + indirectDefault

*

This definition is a direct transcription of the theorem. To avoid excessive complexity
in the specification, the alpha function can be further factored by defining an auxiliary
function

CDO: :
query defaultInfection(n : int, k : int, i : int) : double
pre: i > 0 & k >= 0
post:
result = MathLib.combinatorial (k,i) *
(p->pow (1)) * ((1-p)->pow (n-i)) *




9.3 Davis and Lo Theorem 145

((1 - (1-qg)->pow(i))->pow(k-1))* ((1-g)->pow(i*(n-k)))
And calling this in the Sum operator in alpha:

CDO: :
query alpha(n : int, k : int) : double
pre: k >= 0
post:
directDefault =
(p->pow (k) ) * ((1-p) ->pow (n-k) ) * ((1-q) ->pow (k* (n-k))) &
indirectDefault =
Integer.Sum(1l,k-1,i,defaultInfection(n,k,i)) &
result = directDefault + indirectDefault

Requirements validation includes checking that this computational version of the
formula agrees with the mathematical formula. The specification can also be executed
to check computed results.

9.4 Expectation and Variance
In [1] the expectation of the number of defaults E [N] is shown to be

EN)=n(1-(1-=p)(1—pg"").

Proof

LetN=Z+7Z,+---+Z,andhence E[N|=E[Zi+Z,+---+ Z,].
Now,

n
Li+Z+ +Zi=Xi+ X4+ X, (=in)
i=1

+y (1 =X) (1= M (1 - X)) -
i=1

Since the X’s are independent, E[X; +Xo + -+ Xp,] = E[Xi] + E[X2] + - - -
E [X,]. Moreover, since each X; denotes a Bernoulli random variable we have

EX]l=1-p+0-(1—-p)=p

and hence E [Y_7_, X;| = np.
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Since the X’s and Y’s are independent

E [2”:(1 —X) (1 - Mz (1 _Xiji)):| =

i=1

ZE (1=X) (1= Mz (1 = X,75))].

Again, due to independence, the right hand side of the above equation is

ZE (1 =X) (1 = M (1 = X;¥3))] = D E[l =X E [1 = M (1 = X;%)]

i=1

=Y (-p(1-U-pg"")

i=1
=n((l—p)(1—U1—=pp"")).

The first product in the second equality above follows from the linearity of the
expectation operator. The second product in the second equality follows from the
fact that

E[1-X;Y;]=1-pq

and since j # i there are n — 1 possibilities for j.
Putting together the above results we get

ENI=np+n(1—-p)(1—(1—pg"™")
=n(l-(1-=p)A—pp"").

This gives us an operation

CDO: :
query edefaults() : double
post:
n = loans.size &
result = n*(1-(1-p)*((1l-p*q)->pow(n-1)))

For the model of Fig.9.1.

Theorem 9.4.1 The variance var [N]in [1] is

var[N] = E[N]+n(n—1) g4 — (E [N])?
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where

Bt =p*+2p(1—p) (1= (1 —g) (1 — pg)"?)
+=p? (1-20 = p" + (1~ 20q + pg”)' 7).

Proof
The variance can be written as
var [N] = E [N*] — (E[N])*.
We have already calculated E [N] so it remains to determine E [N 2]. Note that
E[N|=EZi+ 2+ +Z,]*. (9.4)

Note that the right hand side of Eq.9.4 contains n® values of the form Z;Z;, i =
l,...,n, j=1,...,n. Of these n* values, n will be of the form Z? and n (n — 1)
will be of the form Z;Z;. However, since all the Z’s consist of variables which are
i.i.d their moments will be identical also. As a consequence, E [Z}] = E [Z3] etc.,
and E [Z,2,] = E [Z,Z3] etc., this implies that

E[N*]=nE[Z]+n(n—1)E[Z1Z,]. (9.5)

Let f be any function and using the well-known fact that for any discrete random
variable V we have that

E[fWM]=>fmgw®)

veV

where g is the probability mass function of V and V is the support of V. In our case
V=2Zandf (V) =2,V ={0,1}and g(1) = p, g(0) = 1 — p and this implies
that
E[Z}] =P+ (1= 1%p) (1= (1 - 1%p1%g)"")

=p+1=p)(1-01-pg'")

=1-(-p)-pp""

=E[Z]. 9-6)

Expanding Z,Z, we get

217 = X1 Xs 9.7)
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+X (1= X2) (1 = (1 = Yi2) iz12 (1 = X;Y))) (9.8
+X (1= X)) (1 = (1 = Yap) Hiz12 (1 = X;Y1)) 9.9
+ (1 =X (1 = Xp) *

(1= M2 (1= X;¥3)) (1 = Mz (1= X¥p))) - (9-10)

Taking Eq.9.7

E[X\X>] = E[X1]E [X5]
=p°. 9.11)

Taking Eq.9.8, since only X; has defaulted directly this implies that X, must
default by contagion. However this contagion cannot be caused by either X; or X,
(i.e.,j # 1, 2). However, since we know that X; has defaulted this implies the event
(1 — Y12). As a consequence we have

E[X) (1=X) (1= (1 = Y) 215 (1 - X¥p))] =
EXE[l =X]*E[1 = (1 = Y) iz (1 — X;Yp)] =
p=p)x(1—(1—q) (1—pg)"?)

Taking Eq.9.9 we obtain the same result as for Eq.9.8.
Taking Eq.9.10 we see that

(1= 12 (1 = X¥p))
(1= Mo (1 = X¥p)) = 1= M0 (1 = X;¥p1) —

iz (1 = X;Yp) 9.12)
iz (1= XY *
iz (1= XYp) . (9.13)

Expanding Eq.9.13 we get

Mz (1= X;Y))
Mz (1= X;Yp) = M2 (1 = X;Y51) (1 = XYp)
= Mz (1 = XYy = XY + X7YnYp)  (9.14)

Taking expectations of Eq.9.12 we get
E[1 = i1 (1 = XY)1) = Mz (1 = XYp) | = 1-2(1 = pg)"~>.
Taking expectations of Eq.9.14 we get

E[Maz (1 - XYy — XY + XY Y0)] = (1 - 209+ pg?)" .
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Taking the expectation of (1 — X;) (I — X,) in Eq.9.10
E[(1-X)) (1 =X =(1-p)*.

Combining all the above we get E [Z,Z,] = B5?. Hence substituting this value
and Eq.9.6 into Eq.9.5 we get E [N?] and the result for the variance follows as an
immediate consequence. O

As with the probability of defaults and expected number of defaults, this result
allows us to define an operation vdefaults() : double of the CDO class in Fig.9.1.

9.5 Assuming Poisson Number of Default Events

In [2] Hammarlid discusses a model in which outbreaks (i.e., the number of default
events in a sector k of n;, borrowers) are considered to be a Poisson random variable
Ay with intensity

e =1—(1—p)™

where py is the probability of default in sector k, and n; is the number of borrowers
in sector k. Figure 9.2 shows this more elaborate model of CDOs. In terms of this
model, sectors[k].mu represents u;, and sectors[k].n represents ny, etc.

The intensity corresponds to the probability of at least one borrower defaulting.
Note that a single outbreak does not imply that a single borrower default has occurred,
instead an outbreak denotes the occurrence of an event for which at least one borrower
might default. For each outbreak in a sector k the loss due to the outbreak is Sy =
NuL; where Ny is the number of defaults for the outbreak / =0, ..., A; and L; is
the loss attributable to a default in sector k. The total loss for a sector is given by

A
Sk = Zl:ko Sk

and the total loss for the portfolio (assuming K sectors) is

K

S = Zkzlsk.

sectors
1 Sector

CDO * fordered} [n :int
p, q: double
L:int
mu : double

Borrower

1

* {ordered}

loans

Fig. 9.2_Poisson.CDO.model
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The key result as it relates to the above assumptions is the following theorem

Theorem 9.5.1 Assume the number of outbreaks Ay, to be a Poisson random variable
with intensity . Then the probability P(S = s) of a total loss amount s is:

P(S=0)=¢ Zim
K [s/L]
P(S=s) = ;Z Z iy miLP (N = my | N > 0) P (S = s — myLy) .

k=1 m=1
In the above theorem note that

P (N = my)
M '

PNy =my | Ny > 0) = (9.15)

Note also that P (N, = my) is calculated exactly as for Eq.9.3.
Hammarlid [2] derives the moment generating function of the total credit loss:

Mg (y) = eXiet ta(M:0=1) (9.16)
where
- 1 &
Mi(y) =— """P (N, =m). 9.17)
L

From the above results we can define a recursive operation to evaluate P(S = s)
for the model of Fig.9.2:

CDO: :
query ps(s : int) : double
pre: s >= 0 & sectors->forAll( L > 0 )
post:
(s = 0 =>
result = (sectors->collect(-mu)->sum())->exp()) &
(s > 0 =>
result = (1.0/s)*Integer.Sum(l,sectors.size,k,vs(s,k)))
CDO: :
query vs(s : int, k : int) : double

pre: s >= 0 & sectors->forAll( L > 0 )
post:
Lk = sectors[k].L &
result = Integer.Sum(l, (s/Lk)->floor (), mk,
sectors([k].vsk(mk) *ps (s-mk*LKk) )
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Here vs computes the inner sum in the s > O case. Because the first set of terms
Wi ML P (N = my | N > 0) are all expressions on the data of the specific sector[k]
instance, the vs computation can be decomposed by evaluating these expressions with
an operation vsk of Sector:

Sector::
query vsk(mk : int) : double
post:

result = mu*mk*L*pcond (mk)

where pcond (mk) computes P (N, = my, | Ny > 0).
From ps(s) we can also compute pgs(s), the probability that losses are s or more:
P(S > ).

9.5.1 Risk Contributions in the Poisson Model

In this section we expand on the work of [2] and determine the risk contributions
RC of each sector to the total portfolio credit loss volatility. For example, using well-
known properties of moment generating functions, by twice differentiating Eq.9.16
we can determine the expected loss and variance of the total loss distribution. First
of all we deal with Eq.9.17

M, (y) = ;T ZmP Ny = m) "™

m=1
v Ll% S 2 mylL,
M, (y) = Zme Yo pP (N = m) .
H m=1
Now
~ 1 Lk o
M (0) = == " mP (N = m) (9.18)
Mg 2 —
and

2 3
M, (0) = —"Z m*P (N, = m). (9.19)
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We also note from Eq.9.17 that

M, (0) = ui > P (N, =m)

1
k

Mk

273
=1

The second to last equality emerges from the fact that the sum of the probabilities
is equivalent to the probability of at least one borrower defaulting which is equal to

M-
Given the foregoing it can be observed that Mg (0) = 1. Further

K

Mg (y) = Ms () Y 1 My () (9.20)
k=1
K _ K ~

Mg (y) = Mg () Y My (V) +Ms (V) Y M (). (9:21)
k=1 k=1

From the above equations, previous results and substituting O for y in Eqs.9.20
and 9.21 we see that

K Nk
E(S) = ZLk Z mP (N = m) 9.22)
Z ZLkLk ZmP (Ny = m) ZmP m) +
k=1 k=1
Z Z m*L2P (Ny = m) .
k=1 m=1

This enables us to define an operation expectedLoss() : double of the CDO class
in Fig. 9.2, which computes E(S).

Given the above the variance of the total portfolio loss o

is

o’ = m*LIP (Ny = m) . (9.23)
Z )3

k=1 m=1

Noting that the risk contribution can be written as
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RC; = LkDD—Zk = i—;z;: (9.24)
and using the second equality it follows that
R
RCy = — ;Lkm P (N = m). (9.25)

This enables us to define an operation riskContribution(k : int) : double of CDO,
quantifying the risk contribution RC} of sector k. The higher this value, the more
significant sector k is to the risk of losses for the CDO as a whole.

Given Eq.9.25 we see that

K 1 K m
> RC, = - DO Lim*P (Ne = m)
k=1 k=1 m=1

o2

= 0.

‘We can further consider individual borrowers within a sector, where each borrower
has a specific loss amount L} and a weighting wi within the sector (borrowers[i].L
and borrowersli].omega in Fig. 9.3). Note that now we are considering double-valued
L attributes instead of integer-valued.

If we assume that the L; for each sector corresponds to a simple weighted average
of the exposures for each individual borrower then we have a metric that would be
consistent with assuming a single instantaneous default probability and contagion
probability for each sector. Given this we can denote L in terms of its constituent
actual exposures Lii=1,...m:

g
Lk = E W;{L;C
i=1

where ) _7* wi = 1. Then noting that

Fig. 9.3 Borrowers in

Sector 1
sectors
p: double
q: double
L : double borrowers | = {ordered}
mu : double
e —————— - Eomer
L : double

omega: double

ol LElUMN Zyl_i.lbl
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00 00 DLk

DL‘ DLk DL‘

[og

= _'Wk'
0Ly

The last equality implies that the risk contribution of borrower i in sector k is:

[ o
DL‘
_ 0o
T
1 202
T 20 0L,

RC = LI —
.w,’;L};
wiLy
-
= ;w;L;r;LkaP (N = m). (9.26)

This result enables us to define an operation

CDO: :
query borrowerRiskContribution(k : int, i : int) : double

to compute RC}, in the Poisson CDO model.
It can also be shown that

ikc;;
i=1

Ny

> lkak ZLkm P (N, =m)

i=1 m=1

ng
é > Wil Z Lim2P (N = m)

i=1 m=1

I
=—L Lim*P (N, =
O_k'; k" P (N = m)

= RC.

For any probability distribution, there is a relationship between its mean, standard
deviation and any percentile. Let EL, o and Var denote the distribution expected loss,
standard deviation (or volatility) of losses and the loss for a given percentile. Given
a multiple £ of o we can define the relationship between these parameters

EL + &0 = Var.

Based on well-known properties of expectation and those we have shown already

(for the decomp051b111ty of o into its risk contributions) we can write a variation of
e contribution to the percentile or Var as
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RC, = EL; + £RC.

Note that, from Eq.9.22, Y& | EL, = E(S) = ELand Y_f_, RC; = 0. In a sim-
ilar manner, and adapting Eq.9.24, it follows that

a oVar
oL,
- 0EL . 00
=L —+L&—.
7 i oL

The derivative of o with respect to L has already been calculated and the other
derivative is

0EL _ 0EL L,
oL, L oL

Nk
=w};ZmP(Nk=m).

m=1

Putting everything together we have

ng
RCi = Liwi Z mP (N, = m) +

m=1
3 -
Wil T Lem?P (N = m) .
s ka:; xm” P (N )

9.6 Exact Distribution Moments

In [2] the author also derives a model for the probability distribution of losses based
on the following probability generating function:

g () = I, (1= pg + e Gic (0) (9.27)
where
G () =Y P (Ne=m|N>0)". (9.28)
m=1

In the following we explore the first and second order derivatives of Eq.9.27 to
determine the mean and variance of the loss distribution based on the probability
generating function. The first derivative of Eq.9.28 with respect to ¢, §,’C (1) is:
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0 () Ly o .
T=TZmP(Nk=m|Nk>0)t ‘£, (9.29)

m=1

The second derivative of Eq.9.28 with respect to ¢, g}; (1) is:

Vo L

e
1 !
2 _ L LA

o ) E m°P (N, =m | Ny > 0) 1" tgk ). (9.30)

m=1

It is convenient to take the log of g (¢):

K
log (g (1) = Y log (1 — pu+ i G (1))
k=1

and taking the derivative of this log expression with respect to ¢:

g0 _ i s Gy (1)
g ==yt G (1)
=

K A
P M Gy (1) g (1)
90 = k;: 1= s+ i e (0

Using the quotient rule it follows that g (7) is:

K B . . P
S =3 1 (1= e+ g G (0) Gy (t);g(t) 2Mk (@6, ) g ()
k=1 (1= e+ i G (1)

where, using the product rule:

N L} & 1.
dg, (1 g (1) =g (0 [T§ D P (Ne=m| Ne>0)" — g, (t)] +
m=1
K

3 I Gy (D) g (£)
1 — g 4 oy G (0

Li &
— mP (N, = m | N > 0) /"
tﬂ; (Nk | Nt > 0) 2

Now substituting 1 for z we see that g (1) = 1 and g, (1) = 1. Also
Nk
9¢ (1) = CELy = L ) _mP (Ny = m | Ny > 0)
m=1

where CEL; denotes the conditional expected loss for sector k. It follows that




9.6 Exact Distribution Moments 157

K

g () =) CEL
k=1
= EL.

Note that this is the same result that was obtained for the Poisson model for the
expected loss of the whole portfolio. Using the previous results the product term
becomes

Ny
dg, (H)g(1) = [L,E > m*P (N =m | N > 0) — CELk:| +

m=1

Ny K
LY mP(Ny=m | N, >0). ) py CEL
m=1 k=1

Nk
= [L,% > mPP (N =m | Ny > 0) — CELk] + CEL.EL.

m=1

With this and the previous values substituted into ¢ (¢), for = 1 we get

M=

ng
g ()= {uk [L,% > m?P (Ng =m | Ny > 0) — CEL + CELk.EL:| —u? CEL,%}

m=1

~
I

1

Il
M=

ny.
{ Lk [L,% > m P Ny = m | N > 0) — CEL; + CELk.EL:| - EL,%}

k=1 m=1
K ng K

=Y > mPLEP (N =m) - Y ELy + EL* — EL?
k=1m=1 k=1

g
> m*LEP (N = m) — EL.

1m=1

I
M=

k

Note that the last line of the above result is of the form:
gy(H)=E(X*) -EX).
However, using a basic property of probability generating functions we know that

E(X?)—EX) = Var(X)+[EX)7P —EX)
= Var (X) = gy () = [EXOF +EX).

Applying the above to the g (1) we get
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K
o? =" m’L{P Ny = m) — u; CEL}.
k=1 m=1
As in the case of the risk contributions for the Poisson model we know that
Ly 02

_ZUE

1 ng
== [Z Lim*P (Ny = m) — i} CEL,{| )
m=1

RCy

Summing these risk contributions over all sectors we get

ni

K K
1
§ RC =—§ § L>m*P (N, = m) — u? CEL?
k=1 ‘ O-k—1m=1 km (k m) Mk ‘

2

.qqu

Based on similar arguments as in the Poisson case it can be shown that

: R T
RC; = wili~ {Z Lim®P (Ny = m) — i3 CEL,%}
m=1

and clearly that > 1*, RC. = RCy.

i=

9.7 Allocating Borrowers Across Sectors

The analysis conducted so far assumes that contagion only occurs within sectors
and that borrowers only belong to a single sector. We now relax the assumption that
a borrower can only belong to a single sector. By assuming that borrowers can be
associated with more than one sector we allow for the simultaneous contagion of
several sectors by the same borrower and hence we introduce a form of inter-sector
contagion, including for example the case of a business with activities in several
sectors. In the sequel we focus attention on the Poisson model.

Let 6 denote the percentage allocation of borrower a to sector k. This means that
one borrower, b, may have an allocation of (for example), 0.5 to one sector, 0.3 to
another and 0.2 to a third. This can be represented by further extending the CDO
model to include an intermediary entity between Sector and Borrower (Fig.9.4).
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cbo 1 sectors| Sector 1 borrowers] Borrowerin
* fordered}|L : double * {ordered Sector
p, q : double omega : double
mu : double theta : double
n:int * Jinsectors
1] borrower
Borrower
L : double
p : double
Fig. 9.4 Borrowers in multiple sectors
b1 al: Borrower
§1: Sector
\
a2 : Borrower
b3
s2 : Sector

Fig. 9.5 Example of borrowers in multiple sectors

To visualise this situation, consider an example where there are three borrowers a1,
a2, a3, and two sectors, s1, s2 (Fig.9.5). The BorrowerInSector objects correspond
to the links between the sectors and borrowers.

As a text model, the elements could be written as:

c : CDO

sl Sector

sl c.sectors
sl.n = 2

s2 Sector

s2 : c.sectors
s2.n = 2

al : Borrower
al.L, = 5

al.p = 0.02

a2 : Borrower

ol LElUMN Zyl_i.lbl
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a2

az2.

a3
a3
a3

The linking elements could be:

bl
bl

bl.
bl.

bl
b2
b2

b2.
b2.

b2
b3
b3

b3.
b3.

b3
b4
b4

b4d.
b4d.

b4

L= 7

p = 0.01
Borrower

L =4

.p = 0.03

BorrowerInSector
.borrower = al
theta = 1
omega = 0.6

sl.borrowers

BorrowerInSector
.borrower = a2
theta = 0.7
omega = 0.4

sl.borrowers

BorrowerInSector
.borrower = a2
theta = 0.3
omega = 0.5

s2.borrowers

BorrowerInSector
.borrower = a3
theta = 1
omega = 0.5

s2.borrowers

9 Analysis of Financial Products: CDOs

This means that 60% of s1 consists of al and 40% of a2, whilst s2 has equal pro-
portions of a2 and a3. a2 is split between the sectors, 70% in s1 and 30% in s2.
The 67 for a given borrower a should have the properties that:

K
> 0Ly = L
k=1

K
Zelfpa — pa
k=1

K
dogi=1
k=1

where L, denotes the total exposure to borrower a in a portfolio of borrowers (i.e.,
across all sectors) and p“ denotes the instantaneous default probability for the bor-
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In terms of Fig.9.4 this means that:

inSectors— collect (theta)— sum() = 1

for each borrower.
The omega weightings represent the relative contributions of borrowers within a
given sector, thus:

borrowers— collect(omega)— sum() = 1

for each sector.
From Eq.9.23 we recall that

K n
o’ = ZimzL,%P (N = m).

k=1 m=1

However due to the introduction of the partial allocation to a sector we have that
Ly is a weighted sum of the (partial) losses due to the borrowers in sector k:

N
Lk = ZW;;@iLi
i=1

In terms of the model of Fig. 9.4, this means

Sector ::

L = borrowers— collect(omega * theta * borrower.L)— sum()

Similarly for p. In our example, s1.L can be calculated to be 4.96.

Therefore:
K n
o2 =" "t [ Y WOOLE +2) Wi BOILL; | P (N, =m).
k=1 m=1 i i

The risk contributions can now be calculated

[Lo L, do?
‘oL, 2x0 0L, “
K n
= 2 3w [ 20607 L+ 2 Y wiwiOLolL; | P (N = m)
k=1 m=1 j

= 2w L+ Y W OpO{LL, | P (N = m).
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Summing over all borrowers a we have

K n
SRC = LSS e ooz + Y wiwlorelnit, | P = m)
a .

a k=1 m=1 j
Iy -
= =2 2w | DOGOLE + DY wwib{OlLiLy | P (N = m)
k=1 m=1 a a j
- (o2
= 0.

Based on earlier results it can be shown that

oV 0EL 0
Laﬂ = La_ +Laé_a
oL, oL, oL,
K ny
=L, Z ZmP (N = m) w6}
k=1 m=1

K 13
§ 2 anan2y? i hani
= 0H°L “WIQ“Q’L‘LQ P (N, = .
+UZZ’" W) a+Zwk WOk Oy (N =m)

k=1 m=1 J

Summary

In this chapter we have illustrated the process of mathematical analysis of financial
products by considering the properties of CDOs in depth. Alongside the mathematical
derivations we have provided the UML models and the OCL formalisations of the
mathematical equations.

In general, it is more effective to use conventional mathematical notation to derive
theoretical results using the standard tools of statistics, probability theory and calcu-
lus, and then use OCL and UML as a bridge between the mathematics and practical
computation.

Exercises

1. Formalise the vdefaults() operation of the simple CDO version (Fig.9.1).

2. Formalise the expectedLoss() operation of the Poisson CDO version (Fig.9.2).
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3. In the Poisson CDO version, assume there is one sector with N borrowers, with
loss amount L = 3. What can be deduced about P(S = 1) or P(S = M) where M is
not a multiple of 3?

4. Define pgs(s) in terms of ps(s) for the Poisson CDO model.
5. Formalise the riskContribution(k : int) operation of the Poisson CDO version.

6. Generalising loss amounts L to be double-valued also implies the need to generalise
P(S = s) to double-valued s. Define additional clauses of ps and vs to handle this
extension.

7. Formalise the borrowerRiskContribution(k : int, i : int) operation of the Poisson
CDO version.

8. Compute L and p for the two sectors in the example model of Fig.9.4.
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Chapter 10 ®)
Tool Support for Financial Application e
Development

In this chapter we describe in detail how to use the UML-RSDS tools to specify and
implement financial applications on a number of different platforms. We describe how
the tools can be combined with the use of Excel, and how the tools can be extended
to provide code-generation facilities for new target programming languages.

10.1 Using UML-RSDS

UML-RSDS provides tools to create and edit UML class diagrams, use case diagrams
and other UML notations. The class diagram describes the data of an application,
whilst the use cases define the services which the application offers. We combine
these two views into a single integrated model, in order to enhance agility.

The tools can be obtained from www.nms.kcl.ac.uk/kevin.lano/uml2web or from
Eclipse, they run under Java on either Windows, Mac or Unix platforms.

10.2 Case Study: Extended Bootstrapping

To illustrate the process of specification using UML-RSDS, we revisit the interest
rate bootstrapping example of Sect. 5.3. Currently, the application takes in a series of
known interest rates as a parameter. But it is more usual for finance practitioners to use
Excel spreadsheets or plain text data tables to store source data for computations. The
bootstrap application can be used in this way by introducing a new class, YieldData,
which represents a data table of known interest rates (Fig. 10.1).

Objects of the YieldData class correspond to rows of the table. Tables normally
have a primary key column, this corresponds to an identity attribute in UML-RSDS,
and these must be of String type. In this application, maturity is the primary key for
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RicareVafue: double = 0
inlcnumnﬁt :ll;hle =0
rmoz. %ub]e =0
erm: double =0
ATV Ale ...

timePoint: double = 0
rate: double = 0

Fig. 10.1 Bootstrap with data table

YieldData: this is the String equivalent of timePoint. rate then gives the yield for that
maturity. Data of instances can be read from and written to a file YieldData.csv in
text spreadsheet format. This means that the generated application can be used in an
integrated manner with existing spreadsheet applications.

An example table could be:

"1i", 1, 0.017
"2", 2, 0.015
"3", 3, 0.018

This defines three known interest rates (yields) for investments of duration 1, 2, and 3
years respectively. The order of the columns corresponds to the order of the attribute
declarations within the class.

true => | tment->exists(b | b.p tValue = 115 & b.term = 4 & b.frequency = 1 & b.period =1.0)

Investment::
i : Integer.subrange(1,{ term * frequency )->floor{)) => CashFlow->exists( f | famount = 2 & f.timePoint =i * period
&f:flows)

Investment:: -
i : Integer.subrange(1 flows.size - 1) => flows[i].rate = YieldData[i + ““].rate & flows[L.discount=1/(1+
YieldData[i + "].rate |->pow(flows[l] timePoint)

Investment::

n = flows.size =>fl [n].di: t=(p tValue - Integer.Sum(1,n - 1,i flows[i].discountedAmount()) ) / {
flows[n].amount + 100 )

Investment::

n = flows.size => [n].rate = [n].di t->pow(-1/ flows[n].timePoint) ) - 1

|4

lﬁdrmm.wwum RETEnsy orfeature o
[Varning: | not entity or feature of context class: Invesiment
[Viarning: rate not entty o feature of conteat class: Imvestment

[+

[\Warning: i not entity or feature of contexd class: Invesiment
Warning: imePoint not entity of feature of content class: investment

L[4

“ ] vl
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Within the application, the rate for integer duration ¢ is obtained as YieldData[t +
’].rate. This can be used instead of known[t] in the specification.

Editing of the use case to make this change can be carried out using the “Edit use
case” option on the Edit menu, which opens up a specialised editor (Fig. 10.2).

The constraints can each be checked before saving the use case. Errors are high-
lighted in red and warnings and error messages are listed in the lower window. Once
the specification is syntactically correct, it can be type-checked, and then a design
synthesised from it, using the options on the Synthesis menu.

Finally, using the Build menu options, executable code in different languages can
be generated, to enable testing of the application. Detected errors should be addressed
by editing the specification, not the generated code.

10.3 Code Generation

Automated code generation from high-level models is a key to performance gains
from model-driven engineering. Instead of time-consuming and expensive manual
programming, executable code can be automatically synthesised from relatively con-
cise and simple descriptions of system behaviour. For financial applications, the spec-
ification in OCL notation is usually similar to the mathematical equations that are
used to define financial models. Hence it is relatively direct to express the financial
mathematics in UML-RSDS and to validate the correctness of the specification by
inspection.

Complex code mechanisms such as design patterns, caching and maintaining
mutual consistency of different data items can be automatically constructed by a
code generator, thus reducing the possibility of code errors. The code produced will
usually have a consistent structure, facilitating understanding, testing and integration.

However, code generators may produce excessively long and complex code con-
taining redundancy and duplication, which a skilled human programmer would avoid.
Bugs in the generator may still exist in rarely-used situations, even if the generator
has been used repeatedly without problems for more common cases.

What should an application developer do if they uncover such a flaw in a code
generator? In most cases they are forced into a workaround using manual coding to
patch the flaw, because the code generator itself cannot be changed (it may not be
open source, or the application developer may not have the necessary knowledge to
modify it). We consider that a specialised MDE tooling team should be responsible
for such tool support work. In addition, we publish the specification of our code
generators, so that they can, if necessary, be adapted and modified using the same
process as for the development of general applications.

For example, the UML-RSDS to Python code generator is defined in the file
uml2pymm.txt in www.nms.kcl.ac.uk/kevin.lano/libraries. This generates Python
code in a file app.py which uses the Python library ocl.py for OCL data types and
operations. As yet, there is no facility to read in data from CSV files, as described
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above (and provided for Java, C# and C++). Such a facility could be added to the
Python code generator by defining code to generate an operation

def loadCSVFiles():

## for each defined entity, E,

## look for file E.csv and create

## E instances for each line in the file

This is a self-contained and moderately complex task which should not take more
than one day to complete.
Such code-generation tasks usually involve:

e Investigating what the code in the target language should be—having regard to
simplicity and efficiency

e Identifying what information in the source metamodel (such as UML) is needed
to produce the required code

e Organising the code generation task within the overall code generation process.

In the present case, investigation of Python file-processing facilities identifies that

the code for reading a table E.csv of data will have the form:

Efile = open(’'E.csv’, 'r’)
for line in Efile

ex = E()
values = tokeniseCSVLine(line)
ex.attl = conversionattl(values [0])

ex.attn = conversionattn(values[n-1])
Efile.close()

Where fokeniseCSVLine is a library function that splits the line on ;" symbols, but
also takes account of strings, so that ‘,” within a string is ignored. This function can
be defined as a specific routine in ocl.py. The conversion function conversionatti
of a string value into the appropriate attribute type for atti depends on information
in the source metamodel. We need information from the Entity, Property and Type
metaclasses of the UML-RSDS metamodel (Fig. 10.3):

e We need aloadCSV operation for each leaf class E : Entity (only leaf classes can
be concrete in UML-RSDS)

e A row cell must be processed for each ownedAttribute of such E which is of
PrimitiveType (including numerics, booleans and strings), and for all such inherited
attributes

e The conversion function required is int(value) for int and long-valued attributes,
float (value) for double-valued, and an empty conversion for strings.

In terms of organising the code production, the loadCSV operations can be gener-
ated after the creation operations and before the operations for use cases, in app.py.
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fE: UML-RSDS and UMLZWeb Tools, Version 1.7

T . %;ﬁ(;pmﬂnn { ordered }

isCached: baolean = false 0.1 precogdifiera L Faln T o

Fig. 10.3 UML-RSDS class diagram metamodel

The new specification text in uml2pymm.txt is therefore of the form:

Entity::
isLeaf &
atts = allAttributes()->select( type : PrimitiveType) &

ex = name.toLowerCase + "x" =>

(name + "file = open(’" + name + ".csv’, ‘r’)")->display() &
("for line in " + name + "file :")->display() &

(" " 4+ ex + " = " + name + "()")->display() &

" wvalues = tokeniseCSVLine(line)"->display() &

Integer.subrange(1l,atts.size)->forAll( 1 |
(" " + ex + "." + atts[i].name + " = " +
atts[i].conversion() +
"(values[" + (i-1) + "])")->display()) &
(name + "file.close()")->display()

The specification is based closely on the required code (i.e., it is a template of the
code), with some variable elements based on source metamodel information. The
conversion operation is added to uml2pymm.txt as an operation of Property.
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10.4 Creating New Code Generators

The UML-RSDS tools can be used to create new DSLs and associated tools that
generate artifacts, including code, from DSL models. They can also be used to write
code generators for new target languages.

To define a new code generator from UML-RSDS to a programming language,
the development can be organised into five main parts:

e F1.1: Translation of types

F1.2: Translation of class diagrams
F1.3: Translation of OCL expressions
F1.4: Translation of activities

F1.5: Translation of use cases.

For each part an informal mapping of language elements from UML to the target
language is first constructed. For each UML language element (i.e., each metaclass in
Fig. 10.3), the concrete syntax of its representation in the target language is identified.

The type mapping is fundamental, since types are used in all other parts of UML-
RSDS: to give types to class features and to expressions, and to expressions within
statements and use cases. Thus this mapping should be established first since it
determines aspects of the other mappings. Table 10.1 shows the informal mapping
of types for UML to Python.

For the mapping of class diagrams, F1.2, we identify how classes and their owned
properties and operations should be represented in Python, including a representation
of inheritance. Table 10.2 gives an informal mapping for these elements.

This mapping reflects a decision to utilise Python’s dynamic typing to express
UML inheritance.

A similar specification can be defined for mapping expressions (F1.3), activities
(F1.4), based on the activity metamodel (Fig.3.7), and use cases (F1.5). The detailed
definitions of these clauses will depend on the target programming language, however

Table 10.1 Informal mapping scenarios for UML types to Python

Scenario UML element e Python representation e’
F1.1.1.1 String type str

F1.1.1.2 int, long, double types int, int, float
F1.1.1.3 boolean type bool

F1.1.2 Enumeration type Enum class instance
F1.1.3 Entity type E class E

Fl.1.4.1 Set(E) type set

F1.1.4.2 Sequence(E) type list

F1.14.3 Map(K, T) type dict
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Table 10.2 Informal scenarios for the mapping of UML class diagrams to Python
Scenario | UML element e C representation e’
F1.2.1 Class diagram D Python program with D’s name
F1.2.2 Class/interface E class E : definition
static variable e_instances = []
def _init__(self)
E.e_instances.append(self)
def createE() : operation
F1.2.3.1 |Instance-scope attribute p : T Instance variable p = T’ Init defined
in init of E
F1.2.3.2 | Principal identity attribute p : String of Static e_index = dict ({}) variable
class E of E
def getEByPK(v) : operation
def createByPKE(v) : operation
F1.2.3.3 |class-scope attribute att : T static variable att = T’'Init
F1.2.4 Operation op(p : P) : T of E Python operation
(instance-scope) def op(self,p)
F1.2.5 Inheritance of A by B Features of A are listed in class B

the structure of the specification and the cases to be considered will always be the
same. Thus it is possible to copy a generator such as uml2py and adapt it to a new
target language, e.g., JavaScript or Matlab.

10.5 Defining Domain-Specific Languages (DSLs)

New software languages can also be defined using UML-RSDS, together with sup-
porting tools. For example, consider the JSON (JavaScript Object Notation) text
format for structured data [1]. This is typically used to transfer small amounts of
data between server and client in a web interaction, or as a source format for struc-
tured data of any kind. An example of JSON data is:

[{ "share" : "IBM",
"date" : "2018:12:28", "opening" : "123.6",
"closing" : "122.1", "volume" "110000"},
{ "share" : "MSFT",
"date" : "2018:12:28", "opening" : "153.0",
"closing" : "155.2", "volume" "199000"}]

describing some share data. The JSON data has the form of a list of objects, where
each object is a list of pairs “key” : “value” giving the value of each property of the
object.
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JSONObje

Fig. 10.4 JSON metamodel

We may need to transform such data into many different forms, such as XML (for
FIX processing), HTML (to display on a web page), plain text, program language
data declarations, or code to store the data in a database, etc.

The steps needed to define a DSL and tools in UML-RSDS are:

1. Define a class diagram to formalise the concepts of the language. This defines
the abstract syntax of the DSL.

2. Define a concrete syntax for the DSL, or adopt one if such a syntax already
exists.

3. Write UML-RSDS operations and use cases to formalise different tools to operate
on DSL models.

4. Use the UML-RSDS tool to build stand-alone tools for the DSL from the tool
specifications. These will be Java .jar files.

For JSON, these steps become:

1. Define the class diagram of the language metamodel (Fig. 10.4).

2. Adopt the existing concrete syntax for JSON.

3. Specify required tools, such as aJSON to HTML transformation, in UML-RSDS.
4. Code-generate the tools using the Synthesis and Build options.

Because of the recursive nature of the JSON format, the natural form of specifica-
tions processing JSON are operations for each metaclass, that typically invoke other
operations to process their sub-parts. For example, printing the concrete syntax of
JSON data can be achieved by the operations:

JSONValue: :
query abstract toString() : String
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query toString/() String
post:
result = key + " " + value
JSONObject: :
query toString/() String
post:
(bindings.size = 0 => result = "{}") &
(bindings.size = 1 =>
result = "{ " + bindings [1] + ") &
(bindings.size > 1 =>
result = "{ " + bindings [1] +
bindings.tail->collect( p | ", " + p )->sum() + " }")
JSONBasicValue: :
query toString/() String
post:
result = data
JSONSequence: :
query toString() String
post:
(elements.size = 0 => result = "[]") &
(elements.size = 1 => result = "[ + elements[1l] + " 1") &
(elements.size > 1 =>
result = "[ " + elements[1l] +

elements.tail->collect( p |

"

L o) )—>sum() + " ]n)

The application can be edited either using the graphical class diagram editor, or
equivalently in the text KM3 editor (Fig. 10.5).
In a similar manner, a mapping to HTML tables could be defined as:

JSONValue: :
query abstract toHTML () String
JSONPair: :
query toHTML () String
post:
result = key.data + " : "
JSONObject: :
query toHTML () String

post:

0 => result =

n n)

+ value.toHTML ()

&
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[JSONPair] *
binding

class JSONBasicValue extends JSONValue {
attribute data : String;

Fig. 10.5 KM3 editor

result = bindings->collect( p |
"<td> " + p.toHTML() + " </td>" )->sum())

JSONBasicValue: :
query toHTML () : String
post:

result = data

JSONSequence: :
query toHTML() : String
post:
(elements.size = 0 => result = "") &

(elements.size >= 1 =>
result = "<table> " + elements->collect( p |
"<tr> " + p.toHTML() + " </tr>\n")->sum() +
" </table>")

Notice that in this specification we need to call foHTML explicitly, whilst in the
toString specification there are implicit recursive calls. The assumed structure of the
JSON document is a sequence of objects, which becomes an HTML table with a row
for each object.

10.6 Libraries

A set of libraries are defined that provide mathematical and financial functions,
together with necessary data structures such as vectors and matrices. These can be
imported into UML-RSDS specifications.
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The libraries are:

e FinLib, with functions euPutOptionPrice, euCallOptionPrice
e Real, with operations

— subrange(low : double, step : double, upper : double) : Sequence(double) to
provide sequences of doubles ranging from low to upper in intervals step

— minValue() : double, maxValue() : double which return the minimum and max-
imum permitted double values.

e MathLib, with operations random, factorial, combinatorial, gcd, Icm, pi, e,
isPrime, and various hyperbolic, conversion and integration functions.

e NormalDist, with operations normal, cumulative, sample for the normal distribu-
tion.

e Matrix, with a wide range of operations on (2-dimensional) matricies.

e Sequences, with operations on vectors, considered as sequences.

e StarLib, with operations on statistical distributions, such as

— mean(Sequence(double)) : double
— standardDeviation(Sequence(double)) : double, etc.

e NumericOptLib, with operations for secant, bisection and other numerical opti-
misations. This is linked to classes Simplex and SimplexPoint for the simplex

algorithm.
e StringLib, with operations before(str : String, delim : String) : String, after(str :
String, delim : String) : String, split(str : String, delim : String) : Sequence

(String), etc.
e XMLParser, to parse XML documents.

These libraries are defined in realmm.txt, mathlibmm.txt, etc, at
https://nms.kcl.ac.uk/kevin.lano/uml2web/libraries
Summary

In this chapter we have given details of the UML-RSDS process and tools to support
synthesis of financial application from specifications. We have given guidance on
adapting and extending the tools to provide additional functionality.

Reference

1. JavaScript Object Notation, https://www.w3schools.com/js/js_json_intro.asp (2018)
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Appendix A
Glossary

Basis Point

0.01 of a percentage point. Often used in relating different rates of interest, to express
that one rate is X basis points above or below another.

Compounding

The combination of a capital sum with an increment (or decrement) due to an interest
rate. Discrete compounding involves the increment being applied annually or a fixed
finite number of times per year. The equation is

Y=Xx(14+nr"

for annual compounding of X at rate » for N years, and
r f*N
Y=X=x (1 + —)
f

for frequency f-per-year compounding of X at annual rate r for N years. Continuous
compounding increases the frequency f to infinity, and mathematically this results
in the equation

Y =Xse™V

Credit Crunch

The financial crisis of 2008-2009, caused by defaults in securities backed by sub-
prime mortgages, led to widespread losses throughout the banking system, and hence
to an economic slowdown which still affects the UK economy.

Derivative Security

A security whose value is based upon the value of other securities or assets.
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Hedging

Reducing the risk of losses in a main position by creating an alternative position
which will compensate for adverse results in the main position.

For example, using options to take an opposite position in the market to a main
position.

In the Money

A contract is in the money to an investor if it represents a profit for them given the
current values of assets. For example, an American option on a stock can be exercised
at any time (in principle) and such a call option would be in the money at any time
where the stock price is greater than the option strike price.

A contract is at the money if it is in a state of zero profit/loss currently, and out of
the money if it represents a current loss.

Leverage Ratio

The ratio of a businesses liabilities to its equity. E.g., a business with assets of £1.05
million and liabilities of £1 million has equity of £50,000 and a leverage ratio of 20.

Leveraging

Using a relatively small amount of funds to obtain the effect of a larger investment.
For example, speculating on the price of a share rising above price P by buying call
options in the share with strike price P, instead of buying actual shares. The option
price may be only 5% of the share price: a leverage ratio of 20.

Liquidity
The degree to which funds can be transferred from one asset to another or realised in

cash. Real-estate is an example of an illiquid asset, whilst shares are usually a highly
liquid asset.

Long Position
The party in a contract who agrees to buy an asset.
Net Present Value (NPV)

The income from an investment, minus the amounts invested, all costed in terms
of current values. That is, a cash flow of amount X to be received in N years time
is discounted to X/(1 + )" or X = e~V where r is the annual interest rate that
applies over this time period.

Over-the-Counter Market

Trading of securities directly between organisations without the mediation of an
exchange.
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Repo (Repurchase) Rate

A risk-free interest rate r based on repurchase agreements for securities: the owner
of securities obtains a loan based on temporary transfer of ownership of the securities
to the lender.

Short Position
The party in a contract who agrees to sell an asset.
Value at Risk (VaR)

A risk measure which quantifies the maximum amount of loss L that can arise in an
investment over a specified time period (e.g., one day) within a probability bound.
Le.:

L>VaR, = prob(Loss > L) <p

For example, a one-day 5% VaR of £500,000 means that over one day, there is a 5%
chance that losses will be greater than this amount, and a 95% chance that losses
will be less. VaR is commonly used for risk management and measurement in the
finance industry.

Although VaR is intuitively clear to understand, there are some theoretical objec-
tions to this measure, and concerns that it does not address the risks of low-frequency
but high-impact events.

Yield

The yield of an investment measures the rate at which it returns value to the investor. It
is the unique or smallest interest rate r at which the net present value of the investment
is 0, in other words, the rate at which the investment breaks even.

Yield can be used as a guide to the quality of an investment and hence guide
investment decisions. Other factors, such as risk levels (high risk and high yields
tend to go together) and the term of an investment are also important.

Yield Curve

A graph of the yield (y-axis) against the duration (x-axis) of zero-coupon investments.
This is usually upwards-sloping, indicating that investors prefer the greater liquidity
of short-term investments, and hence higher yields need to be offered for longer-term
investments. In addition investors require a greater rate of return for the increased
uncertainty of lending over longer periods.
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Chapter 2
1. This is the payout of the bond.

2. The bond with price £105 will have the higher yield, because if 105 = value(r)
and 110 = value(r') on the same bond data, then r’ < r.

3. It converges to the redemption amount, 100.

4. Compounding an amount X for ¢ years now involves multiplying X by 1 + rs[i]
for i = 1 to t. Therefore:

value(rs) = (X" coupon/I{_(1 + rs[i])) 4+ 100/1T;¢}" (1 + rs[i])

5. The 3; parameter controls the height of the curve and a change of § in this parameter
shifts the curve up or down by this amount.

6. Several situations could lead to default infection between sectors: (i) a banking
failure in the financial sector would adversely affect any business that holds funds
in the bank; (ii) a failure of a major company can cause the failure of companies
which depend on the company for business, e.g., companies in the supply chain of
the failed company, such as aero engine suppliers which depend on a specific airline
for sales; (iii) a company with subsidiaries in different sectors, which could go out
of business if the parent company does.

7. Here the accrued interest is 1.45329, DSC/E is 0.4945, A/E is 0.5055, resulting in
a value of 96.088.

Chapter 4

1. There would be a 0. . . 3 multiplicity on the customers role end, instead of .
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Fig. B.1 Bank system with transactions

2. This could be expressed as
accounts—select (balance < —overdraftLimit)

in the Customer context.
3. Figure B.1 shows the extended class diagram.

4. This could be:

query sumsqgdiffs (sl : Sequence(double),
s2 : Sequence (double)) : double
pre: sl.size = s2.size
post:
result = Integer.subrange(l,sl.size)->collect( i |
(s1[i]-s2[1i])->sqgr())->sum()

or equivalently as:

static query sumsqgdiffs (sl : Sequence (double),
s2 : Sequence (double)) : double
pre: sl.size = s2.size
post:
result = Integer.sum(l,sl.size,i, (sl[i]l-s2[i])->sqgr())

5.Itwill converge because each iteration divides the search range in half, so eventually
the first condition ru — rl < tol will become true. However it will only find a correct
IRR if there is a point r within the initial range [rl, ru] where price = value(r).
For example, if the IRR is actually negative (the bond can only make a profit if there
is deflation), then searching within the interval [0, 1] will terminate with result O.

Each iteration of bisection halves the length of the interval being considered. Thus
if we start with vl = 0, ru = 1, r = 0.5, then after n iterations the interval length
will be 3.
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On termination ru and rl will be within ol of each other (first clause of the
function definition). If this occurs after n iterations, the range ru — rl has been
divided by 2", so that:

(ru —rl)/2" < tol
(ru —r)/2"D > tol

Therefore:

—n+logy(ru —rl) < logy(tol)
logy(ru —rl) 4+ (1 — n) > log,(tol)

and:

n > logy(ru —rl) —log,(tol)
(n—1) <logy(ru —rl) —log,(tol)

Therefore we have termination within

floor(loga((ru —rl)/tol)) + 1

iterations. For ru = 1, rl = 0 this means floor(—log,(tol)) + 1 iterations.

6. Executable specifications can be validated by testing, in addition to validation by
inspection/walkthrough.

7. There is less detail to manage at the specification level, so it is simpler to apply the
refactorings, in principle. In addition, the refactorings automatically apply to every
synthesised implementation via suitable code generators.

Chapter 5
1. This could be:

static query coprime(x : int, y : int) : boolean
pre: x >0 &y >0

post:
(x = 1 => result = true) &
v = 1 => result = true) &

(
(x /=1 &y /=1 & x =y => result = false) &
( &

x /=1&y /=1 x /=y => result = (gcd(x,y) = 1))

The activity could be:

if x =1 or vy = 1 then return true
else if x = y then return false




184 Appendix B: Exercise Solutions

else if gcd(x,y) = 1 then return true
else return false

2. Applying the formula gives first a 4 year rate of 0.012, then using this with the
second bond gives a 5 year rate = 0.0095.

3. The update operation would need to adjust the rate of each Cash Flow object
cf in the investment flows sequence, and recalculate cf.discount from this:

Investment: :
update ()
post:
flows->forAll( cf |
cf.rate = yieldCurve.yield(cf.timePoint) &
cf.discount = 1/(1 + cf.rate)->pow(cf.timePoint))

Here, cf.rate is considered to be the effective annual interest rate applying in the
period from O to cf.time Point. yieldCurve is the observed yield curve.

4. The key classes are:

e Currency, with a name : String, such as “Euro”, code : String for a 3-letter
code, eg., “EUR”, and symbol : String for the currency symbol, such as “£” for
GB pound.

e There are predefined currency subclasses for most of the national currencies, e.g.,
USDCurrency for US dollars, GB PCurrency for GB pounds.

e Money represents a pair of a currency and a numeric value amount.

e ExchangeRate associates a numeric rate to a pair of currencies, a source (con-
version from) currency, and a target (conversion to) currency. The class provides
an exchange(m : Money) : Money operation to map an amount /m in one cur-
rency to a corresponding amount in the other. Exchange rates can be chained.

e ExchangeRateManager, a Singleton class which stores exchange rates together
with a time period for the validity of the rate. The period is defined by a start date
and end date.

Figure B.2 shows the structure of this part of QuantLib.
Chapter 6

1. The table would have key based on the symbol and date. There would be one
column family price with columns opening, closing, high, low, and one column
family for volume with a single column.

Keys in HBase are in lexicographic order, so the date should be the first part of
the key, in order that all records for a single date are stored adjacently. However the
given date format will not work correctly for key ordering: for example, “27/12/2017
IBM” will precede “28/12/2017 IBM” but “02/01/2018 IBM” may be listed before
both of these. To ensure correct ordering, prepend the date in year:month:day format
before the symbol:
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Exchang o
instance ExchangeHateManager: ExchangeRatelManager = null

stal ate: double =
endDate: double =0

Currency

name: String = "' | cwrency o —
code: String = T x
symbol: String = """

1
[T DCumensy]

Fig. B.2 FX classes in QuantLib

2017:12:29 IBM
2018:01:02 IBM

For (i), partition divides the data into chunks for each map. The map node gener-
ates an empty sequence [] for a record that fails the condition volume > 300000 and
closing > opening + 1, and generates [(symbol, date)] for a record that satisfies
the condition. Shuffle groups all the data with a common symbol into the input for
one reduce. The reduce nodes simply count the size of their input, i.e., the number
of different dates that satisfy the condition, and emit that count with the symbol.

For (ii), partition is as for (i). The map nodes emit [(symbol, date, closing —
opening)] for each record. Shuffle groups these into inputs for each reduce, one
reduce node for each symbol. Each reduce node computes the maximum difference
value in its inputs, and outputs the sequence of tuples (symbol, date, di f f) for which
diff is equal to this maximum value.

2. Partition divides the data into chunks for each map. The map node generates
an empty sequence [] for a record that fails the condition volume > 100000, and
generates [(symbol, date, closing)] for other records. Shuffle groups these into
inputs for each reduce, one reduce node for each symbol. Each reduce node com-
putes the maximum closing value in its inputs, and outputs the sequence of tuples
(symbol, date, closing) for which closing is equal to this maximum value.

3. For SMA this is:

Share: :
adddata (d : ShareDayData) : boolean
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pre: daydata.size > 25 & sma.size > 0
post:
n = daydata@pre.size &
prevSMA = smal@pre.last &
prevD = daydata@pre.last.closing &
smad = prevSMA + d.closing/26 -
daydata@pre[n-25].closing/26 &
daydata->includes(d) &
sma->includes (smad) &

(d.closing > smad & prevD <= prevSMA => result = true) &

(d.closing <= smad or prevD > prevSMA => result = false)
For EMA this is:
Share::
adddata(d : ShareDayData) : boolean
pre: ema.size > 0
post:

prevEMA = ema@pre.last &

prevD = daydata@pre.last.closing &

emad = prevEMA + alpha*(d.closing - prevEMA) &
daydata->includes (d) &

ema->includes (emad) &

(d.closing > emad & prevD <= prevEMA => result = true) &
(d.closing <= emad or prevD > prevEMA => result = false)
4. 11 of the 17 cases have the required properties, that is 65%.

5. Any associative r can be used, including max, min, sum, prd.

Chapter 7

1. For t = n * A\; we have:

y(x X)) =61 + Bax (1 —exp(—n))/n +
B3 % ((1 — exp(—=n))/n — exp(—n))
Atn =1 we have

YD) =Bi+fax (1 —exp(=1) +
B3 % (1 — exp(=1)) —exp(=1))

So 3 4 0.632 % 3, 4+ 0.264 % 33 > 0.

As n becomes large, the coefficients of the 3, and (35 factors tend to % So B +
B2/n + B3/n > 0 for large n, e.g., n > 10.
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2. The operation for slope(n) is

static query slope(n : int) : double
pre: n > 0 & lambdal > 0
post:
result = (yield(n*lambdal) - yield(0))/n

3. yield(0) is B + B, s0

n xslope(n) = By * (1 —exp(—n) —n)/n +
B3 % (1 — exp(—n))/n — exp(—n))

That is:

slope(n) = 3o % (1 — exp(—n) —n)/n* +
B3 % (1 — exp(—n) — n x exp(—n))/n*

Thus for (i) we need 33 > (n — 1) * 3, and for (ii) B3 < (n — 1) * (.
Typically (3, is negative, so (i) will be satisfied for any positive 3. (ii) requires
(33 to be negative and (3, positive, or both positive and 33 < 9 % [3,.

4.
N s e@tDxy(+D) — ar o pnaym) y ,frn)

Son+Dxyn+1)=nxyn)+ fr(n) and frin)=m+ D xyn+1) —n=x
y(n).

5.

fr@) =@+ 1) x B+ B * (1 —exp(=(+ D/A)/ (¢ + 1)/ A1) +
B3 * (1 —exp(—=(t + 1)/A))/((t + 1) /A1) — exp(—=(t + 1) /A1) —
t* (B + Bax (1 —exp(=t/A))/(t/ M) +
B3 x (1 —exp(=t/A1))/ (/M) — exp(—1/A1)))

The t x [3; terms cancel out, as does a term 3, x Ay, leaving:

fr(t) =61+ B2 Ay * (exp(—t/A1) —exp(—(t + 1)/Ap)) +
B3 * Ay x (exp(—t/A) —exp(—(t + 1)/A\)) +
B3 * (t xexp(—t/A;) — (@t + 1) xexp(—=( + 1)/\))

Writing ¢ for

exp(—t/A1) —exp(=(t + 1)/ A1)
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gives the simplified equation

fr) =61 +[a*x Ay xd +
Bax A %0+ B35 *5—exp(—(+1)/A))

6. For the fitting based on yields, the computation of yields from prices is expensive
(the IRR computation), however this only needs to be done once, prior to the curve-
fitting. In contrast, to perform fitting based on prices it is necessary to compute prices
from yields at each fitting attempt, and therefore the computational burden could be
higher in this approach.

Chapter 8

1. The exponential terms tend to 1, and / tends to 0, so the value tends to S — K.
2.

static query euCallOptionPrice(s : double, x : double,
r : double, g : double,
dt : double, sigma : double, income : double) : double
pre: sigma > 0 & dt > 0
post:
p = euPutOptionPrice(s,x,r,q,dt,sigma, income) &
adjustedX = x* ((-r*dt)->exp()) &
result = p + s - adjustedX

3. The options are:

bl : CallOption

b2 : CallOption
bl.underlying Asset = s
b2.underlying Asset = s
bl.amount = b2.amount
bl.maturity = b2.maturity

bl.maturity Price < b2.maturityPrice
Where s : Stock. The contracts are:

conl : Contract
conl.holding = bl
con2 : Contract
con2.holding = b2
conl.position = long

con2.position = short
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Chapter 9
1. vdefaults() is:

CDO: :
query vdefaults() : double
pre: n >= 2
post:
n = loans.size &
e = edefaults() &

result = e + n*(n-1)*beta(n) - e*e
Where:
CDO: :
query beta(n : int) : double
pre: n >= 2
post:

notp =1 - p &
notpg = 1 - p*g &

factorl = p*p + 2*p*notp* (1l - (l-g)*notpg->pow(n-2)) &
factor2 = notp*notp* (1 - 2*notpg->pow(n-2) +

(1 - 2*p*q + p*g*q)->pow(n-2))) &
result = factorl + factor2

Note the necessary assumption that n > 2, which was implicit in the corresponding
proof in Chap. 9.

2.

CDO: :
query expectedLoss () : double
post:
result = sectors->collect( L*sectorLoss())->sum()

Where:

Sector::
query sectorLoss () : double
post:
result = Integer.Sum(l,n,m,m*pcond(m) *mu)

3. P(S=1)and P(S = M) are 0, because there is no combination of defaults that
can produce a loss of exactly 1 or M: only loss amounts that are multiples of 3 can
arise.
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4. pgs(s)is P(S > s),whichisalsol — P(S < s). P(S < s)isthesumof P(S =)

forl =0,...,s — 1, so we can define pgs as:
CDO: :
query pgs(s : int) : double
post:

result = 1 - Integer.Sum(0,s-1,1,ps (1))

5. The lossVariance() of the portfolio loss is:

CDO: :
query lossVariance() : double
post:
result =
sectors->collect (sectorVarianceContribution())->sum()

Where:

Sector::
query sectorVarianceContribution() : double
post:

result = Integer.Sum(l,n,m, m*m*L*L*pcond (m) *mu)

The risk contribution RC}, of a sector is then:

CDO: :
query riskContribution(k : int) : double
pre: 1 <= k & k <= sectors.size
post:
v = lossVariance() &
result = sectors[k].sectorVarianceContribution()/v.sqgrt

6. The simplest approach is to consider that P(S = s) = 0 for s < 0. This means
that ps and vs become:

CDO: :
query ps(s : double) : double
pre: sectors->foraAll( L > 0 )

post:
(s < 0 => result = 0) &
(s = 0 =>
result = (sectors->collect(-mu)->sum())->exp()) &
(s > 0 =>

result = (1.0/s)*Integer.Sum(l,sectors.size,k,vs(s,k)))
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CDO: :
query vs(s : double, k : int) : double
pre: sectors->forAll( L > 0 )
post:
Lk = sectors[k].L &
(s <= 0 => result = 0) &
(s > 0 =>

n

result = Integer.Sum(l, (s/Lk)->floor(),mk,
sectors[k] .vsk(mk) *ps (s-mk*Lk) ) )

7. This can be defined in terms of the riskContribution from Q5:

CDO: :
query borrowerRiskContribution(k : int, i : int) : double
pre: 1 <= k & k <= sectors.size &

1 <=1 & i <= sectors[k].borrowers.size

post:
Rk = riskContribution (k) &
borrowerLoss =
sectors[k] .borrowers[i] .omega *
sectors[k] .borrowers[i].L &
result = (Rk/sectors[k].L)*borrowerLoss

8.51.L1is 4.96, s2.L is 3.05, s1.p is 0.0148, s2.p is 0.0165.
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